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ABSTRACT

Instrumented transport tests were performed with an empty radioactive material cask called
CADM weighing 23 metric tons at the CEA Marcoule site.
This cask was centred in a transport frame on a non-slip mat and transported vertically. It was
secured by four lashing chains equipped with tensioning ratchets attached to shackles on the
lugs of the cask and to anchor rings on the trailer platform.
These tests aimed at measuring the acceleration experienced by the cask, the trailer platform
and the transport frame in all three directions (longitudinal, transverse and vertical), as well as
measuring the forces in the lashing chains of the cask during several transport operations
under routine and normal conditions.
Instrumentation included a speed sensor on the towing tractor, force sensors on the lashing
chains and accelerometers on the lugs of the cask, the transport frame and the trailer platform.
The force, acceleration and speed were measured under routine transport conditions along two
onsite transport routes on the CEA Marcoule site. These parameters were also measured under
normal (and even incident) transport conditions with configurations of sudden acceleration,
emergency forward braking, backward braking and forward braking in a curve, crossing
curbs, small roundabouts and speed bumps.
Acceleration signals were recorded continuously and analysed by removing transients (sliding
time averaging).
The minimum and maximum values of each measurement were extracted for the tests and
processed statistically. The results of this analysis made it possible to determine the following
upper-bound accelerations under routine and normal transport conditions:

- 0.5g longitudinal forward and 0.35g longitudinal backward

- 0.35g transverse

- 0.55g vertical.



1 — Introduction

The CEA conducted a series of instrumented transport tests using an empty radioactive
material transport cask called CADM weighing 23 metric tons. These tests were performed on
the CEA Marcoule site in May 2011.

The CADM cask was centered in a transport frame on a non-slip mat and transported
vertically. It was secured by four lashing chains equipped with tensioning ratchets attached to
shackles on the lugs of the cask and to anchor rings on the trailer platform.

These tests involved measuring:
- Acceleration of the cask, its transport frame and its trailer in all three directions
(longitudinal, transverse and vertical),
- Forces in the four lashing chains of the cask during the different transport operations.
The test conditions covered both routine and emergency (sudden braking) transport situations.

The acceleration signals were then processed and analyzed so they could be compared with
the benchmark accelerations applied in the design calculations for transport securing devices.



2 — Instrumentation on the trailer and CADM transport cask
2-1 — Sensor positions

The instrumentation included:
- 2 accelerometers on the radwaste transport cask (one on each anchor lug),
- 4 accelerometers on the transport frame (one on each side),

- 2 accelerometers on the trailer platform (one at the front and one at the rear next to the
side rails),

- 1 speed sensor on the trailer,

- 4 force sensors between the anchor rings of the trailer and the lashing chains (one on
each chain).

Each accelerometer included three measuring channels so as to measure longitudinal (X axis),
transverse (Y axis) and vertical (Z axis) accelerations.

The force sensors were positioned and named as indicated below:
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2-2 - Photographs

Photo 1: General view of the trailer
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Photo 2: Accelerometer on the right side of the cask (directions X, Y and Z - ACC_EMB_D)
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Photo 4: Accelerometer on the front of the trailer (directions X, Y and Z - ACC_REM_AV)



Photo 5: Accelerometer on the front of the transport frame (directions X, Y and Z -
ACC _SUP_AV)

Photo 6: Accelerometer at the rear of the transport frame (directions X, Y and Z —
ACC _SUP_AR) and trailer accelerometer at the rear (directions X, Y and Z —
ACC _REM_AR)



3 — Description of transport tests
3-1 — Configuring the measurement parameters

The measurements were real-time recordings made by 29 different measuring channels.
The signal units were:
- Force (kN)

- Acceleration (g)
- Speed (km/h).

The following signal post-processing method was used:

Raw signals

Fe = 500 Hz =S

Resetting the offset

Re-sampled signals
Fe =100Hz

Sliding time averaging
(time step: 0.1s)

Averaged signals
Fe =100Hz

Statistical calculation
(Min, Max, Average)

Statistical data
Min, Max, Average

Each signal underwent a sliding time averaging process to smooth out the time signals
obtained. The sliding average — or running average — is a type of statistical average used to
analyze ordered series of data (most often time series) by removing any transient fluctuations
so as to highlight the longer-term trends. This average is called “moving” or “running”
because it is recalculated continuously by using a sub-set of components for each calculation
in which each new component replaces the previous component or is added to the sub-set.

The running average is recalculated every 0.1 seconds in our application, i.e. 1 point every 10
initial time points.



3-2 — Test configurations
3-2-1 — Acceleration and emergency braking

Three types of emergency braking operations were performed:
- Braking while moving forward x 10
- Braking while reversing x 9
- Braking while moving forward in a curve x 1.

These emergency braking operations were preceded by sudden accelerations between the time
when the trailer was at a halt and the time when maximum speed was reached.

The maximum speeds reached after the sudden accelerations and before the emergency
braking ranged between 26 and 37.9 km/h for forward braking, between 8 and 10.4 km/h for
reverse braking, and 22 km/h for forward braking in a curve.

The graph below shows the change in the speed during forward braking operation No. 7
(maximum speed of 37.9 km/h). An average deceleration of about 11.6 km/h per second was
reached for this test.
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3-2-2 - Driving over curbs

The curb tests involved driving up over and down off the curbs both on the left and right side
of the road, as illustrated below. The trailer went over a total of 8 curbs.

Trajectory of the trailer
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3-2-3 - Driving through roundabouts

The roundabout configuration involved doing a U-turn between the DIAM-PHENIX and
PHENIX-DIAM routes, driving through a roundabout with a small radius of curvature located
near the PHENIX pedestrian entrance. This configuration was repeated nine times during the
tests.

3-2-4 — Driving over speed bumps

The speed bump tests were performed with a double speed bump. This configuration was
repeated twice during the tests.

3-2-5 Main itinerary between PHENIX and DIAM

The main itinerary between the PHENIX plant and DIAM facility represented the reference
outbound transport route used when carrying the CADM cask on the CEA Marcoule site. This
itinerary was covered five times for the tests performed under routine conditions. Each trip
lasted about 5 to 6 minutes.
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3-2-6 Main itinerary between DIAM and PHENIX

The main itinerary between the DIAM facility and the PHENIX plant represented the
reference return transport route used when carrying the CADM cask on the CEA Marcoule
site. This itinerary was covered five times for the tests performed under routine conditions.
Each trip lasted about 5 to 6 minutes.

3-2-7 Secondary itinerary between PHENIX and DIAM

The secondary itinerary between PHENIX plant and the DIAM facility represented the back-
up outbound transport route (when the main itinerary is unavailable) used when carrying the
CADM cask on the CEA Marcoule site. This itinerary was covered four times for the tests
performed under routine conditions. Each trip lasted about 5 to 6 minutes.

3-2-8 Secondary itinerary between DIAM and PHENIX
The secondary itinerary between the DIAM facility and the PHENIX plant represented the
back-up return transport route (when the main itinerary is unavailable) used when carrying the

CADM cask on the CEA Marcoule site. This itinerary was covered four times for the tests
performed under routine conditions. Each trip lasted about 5 to 6 minutes.
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4 — Results of transport tests
4-1 — Acceleration and emergency braking
The minimum and maximum values for all the measuring channels were extracted and

recorded for each braking operation. Statistical processing (min, max and average) was then
performed using these results. The graphs below illustrate these results.
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Braking before a curve— minimum and maximum accelerations (g)

Braking before the curve was considered as an emergency operation and was performed in a

left curve. This configuration was performed only once.
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4-2 — Driving over curbs

The curb configuration was performed on an overall scale, i.e. each curb action was not
considered separately. The figures provided in the tables of results relate to all 8 curbs that
were driven over.

Curb — minimum and maximum accelerations (g)
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The results of the 9 roundabout crossings (between each outbound and return trip of the main

and secondary itineraries) are provided below.
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The results of the two double speed bump tests are provided below.
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between PHENIX and DIAM

inerary

Main route between Phénix and Diam — minimum and maximum accelerations (g)

t
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4-5 Ma
The results of the five main itineraries between PHENIX and DIAM are provided below.
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Accélérationen g

Accélérationen g

Main route between Phénix and Diam — minimum and maximum accelerations (g)
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Efforts en kN

11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
-5.0
-6.0
-7.0
-8.0
-9.0

Main route between Phénix and Diam — minimum and maximum forces (kN)

V_01_FORCE_AVG

V_02_FORCE_AVD
V_03_FORCE_ARG

V_04_FORCE_ARD

22



between DIAM and PHENIX

merary

t

ini

4-6 Ma

The results of the five main itineraries between DIAM and PHENIX are provided below.

Main route between Diam and Phénix — minimum and maximum accelerations (g)
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Main route between Diam and Phénix — minimum and maximum accelerations (g)
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Efforts en kN

Main route between Diam and Phénix — minimum and maximum forces (kN)
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4-7 Secondary itinerary between PHENIX and DIAM

Secondary route between Phénix and Diam — minimum and maximum accelerations (g)
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The results of the four secondary itineraries between PHENIX and DIAM are provided below.

Secondary route between Phénix and Diam — minimum and maximum accelerations (g)
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Secondary route between Phénix and Diam — minimum and maximum accelerations (g)
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Secondary route between Phénix and Diam — minimum and maximum forces (kN)

Qyv 30404 ¥0 A

oYY 30d04 €0 A

QAV 30404 20 A

OAV 3004 TO A

9.0

8.0 1

7.0

6.0

5.0

4.0

N{ U sMoy3

-3.0

-4.0

-5.0

-6.0

-7.0

-8.0

28



4-8 Secondary itinerary between DIAM and PHENIX

The results of the four secondary itineraries between DIAM and PHENIX are provided below.

Secondary route between Diam and Phénix — minimum and maximum accelerations (g)
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Secondary route between Diam and Phénix — minimum and maximum accelerations (g)
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Secondary route between Diam and Phénix — minimum and maximum forces (kN)
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5 — Conclusion

The trailer speed, the forces on the lashing chains and the accelerations on the transport cask,
the transport frame and the trailer were measured during the following transport
configurations:

- Acceleration and then emergency forward braking,

- Acceleration and then emergency reverse braking,

- Acceleration and then emergency forward braking in a curve,

- Driving over curbs,

- Driving through roundabouts,

- Driving over speed bumps,

- Main itinerary between PHENIX and DIAM,

- Main itinerary between DIAM and PHENIX,

- Secondary itinerary between PHENIX and DIAM,

- Secondary itinerary between DIAM and PHENIX.

By processing the accelerations (sliding averages with a time step of 0.1 s), it is possible to

remove any transient phenomena considered unusable for transport securing design
calculations performed in a static and not a dynamic mode.
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The table below lists the maximum and minimum accelerations and forces recorded for each
test configuration:

Configuration Longltu.dmal Transv.erse Vertical acceleration Force (kN)
acceleration (g) acceleration (g) (€3]
Front braking -0.243 0.486 -0.151 0.173 -0.296 0.262 -5.182 7.593
Rear braking 0330 0.155 -0.071 0.063 -0.137 0.139 4373 3.432
Frontbrakingina | ), 0.372 -0.152 0.102 0.129 0.129 -4.874 9.718
curve
Curb -0.153 0.126 -0.140 0218 -0.321 0.265 -6.994 13.972
Roundabout -0.117 0.250 0235 0.192 -0.466 0427 | -13.083 | 12.225
Speed bump -0.251 0.234 -0.163 0.175 -0.500 0.538 9.102 8.028
Main Pr';‘il';zx'D‘am -0.160 0.159 -0.228 0.242 0418 0417 7770 | 10,048
Main Dr‘:;;‘;Phe““‘ -0.155 0.187 -0.308 0.279 0382 0351 | -12458 | 15.509
Secondary Phénix- | = 5, 0.159 10228 0.242 0.398 0.383 -6.741 7.885
Diam route
Secondary Diam- | = |, ¢ 0.197 20.177 0.205 20.374 0.350 7354 10.624
Phénix route

These tests revealed the following upper-bound accelerations for routine and emergency
conditions capable of occurring during a transport operation:

- 0.5g longitudinal forward and 0.35g longitudinal backward

- 0.35g transverse

- 0.55g vertical.

These figures are consistent with the accelerations generally recommended when designing
road transport securing systems.
For instance, the IMO/ILO/UNECE guidelines applicable to cargo loading in transport
machines refer to the following accelerations:

- 1glongitudinal forward and 0.5g longitudinal backward

- 0.5g transverse

- g vertical towards the ground.

The forces measured in the lashing chains were small in relation to what could have been
expected. The lashing chains are therefore not subjected to high loads.

To support these tests, it will be necessary to qualify the acceleration filtering method used to
remove any transient phenomena with no impact on the mechanical resistance of the
structures while retaining other phenomena, since these securing systems are most often
designed by applying these reference accelerations in static calculations instead of dynamic
calculations.
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