PATRAM 2010, London

Encapsulation of fuel rods for transport

Simon Stanke

Content

- > Introduction
- > Requirements for the can and the encapsulation process
- > Design of the can and the encapsulation device
- > Encapsulation process
- > Process qualification
- ➤ Conclusion and outlook

Introduction

The need for encapsulation of fuel rods:

There is a high demand for post-irradiation investigation of

- 1. Fuel rods with very high burn-up
- computer codes for fuel depletion and decay not validated
- no sufficient data about mechanical properties
- 2.Damaged fuel rods
- no sufficient data about mechanical properties
- danger of losing particles during transport

However, those rods have to be encapsulated in leak tight cans for a safe transport.

Introduction

Current state of the art for encapsulated fuel rods:

- 1. Fuel rods stored in hot cells
 - → Production of welded cans
- 2. Fuel rods stored in a pool
 - → No solution

Underwater brazing device

Requirements for the can and encapsulation process

Requirements for the can:

- withstand normal conditions of transport,
- provide a leak tight barrier for the fuel,
- corrosion resistance,
- no free water in the cavity of the can,
- can filled with inert gas (e.g. Helium),
- designed to be handled in NPPs and Hot Cells.

Requirements for the can and encapsulation process

Requirements for the encapsulation process:

- installation operated in the fuel assembly pool,
- sufficient head of water,
- remote controlled brazing,
- high quality process control,
- documentation of process parameters,
- provide sufficient performance.

Design of the can and the encapsulation device

Design of the can:

- -Tube
- Holes for handling
- Slits for dewatering
- Top plug
 - Head for handling (adaptable)
 - Brazing solder
- -Bottom plug
 - Filter
 - Holes for dewatering
 - Brazing solder

Design of the can and the encapsulation device

Design of the encapsulation device:

- -Upper brazing station
 - Inductor (1)
 - Pyrometer (2)
 - Connector (3)
- Connecting tube
- Lower brazing station
 - Inductor (4)
 - Pyrometer (5)
 - Connector (6)
 - Remotely operated lift (7)

Encapsulation process

General steps:

- 1.Loading of empty, preassembled can
- 2.Loading of fuel rod
- 3.Inserting top plug and closing of the device
- 4.Draining and drying
- 5. Filling with inert gas
- 6.Brazing
- 7.Leak test
- 8.Flooding of the encapsulation device, removal of sealed can

Encapsulation process

Loading of fuel rod, positioning of the plugs:

- 1: Loading position
- 2: Loading of fuel rod
- 3: Inserting the top plug
- 4: Pushing up the bottom plug
- 5: Brazing position

Process qualification

Test stand:

- Built for process qualification with BAM (competent authority)
- Capable to produce cans with a length of 750mm
- Use of final design plugs
- Displaying all important steps of the encapsulation process

Process qualification

Tests and results:

Determination of the right parameters (heating gradient and holding time)

- Helium-Leakage test

- Pressure test (7 MPa)

Metallographic analysis (not finished)

Promising results for the qualification of the Brazing-procedure

plug

brazing solder depot

Conclusion and outlook

- Encapsulation process meets the requirements as described
- Procedure qualification is on its way

 (Some results of the metallographic investigation have to be awaited)
- Manufacturing of the production installation is on the way
- First hot application planed for the next few months

Thank you for your attention!

