

Waste transport requirements to the future geological repository

A. Roulet - Th. Labalette

PATRAM Oral 062 October 5th, 2010

Overview

- 1. Introduction
- **Disposal inventory**
- 3. Transport needs
 - new transport casks designs
 - conveyance systems,
 - transport route and flows
- Repository infrastructure options
- 5. Conclusion

2006 Programme Act for the French repository:

- Dicense application should be reviewed in 2015
- If the licence application is delivered, the disposal should be commissioned in 2025
-) A public debate will be held before license application

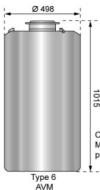
Manticipate future development needs for transport means

Need to integrate now an analysis of the waste transport chain

"Anticipate ratare development needs for transport means
☐ Transport casks and conveyance systems
□ Infrastructures
Integrate transport needs and constraints in the discussions with local stakeholders
☐ Transport flows
☐ Siting process and needs of infrastructure developments

2. Disposal inventory

HLW Packages (vitrified wastes)


- Three types of glass canister
 - ☐ AREVA La Hague R7/T7: CSD-V
 - + Most canisters will not be disposed of before 2045/2050
 - » decrease to 500 W for repository acceptance
 - + some canisters (UMo) with moderate thermal output

□ CFA Marcoule

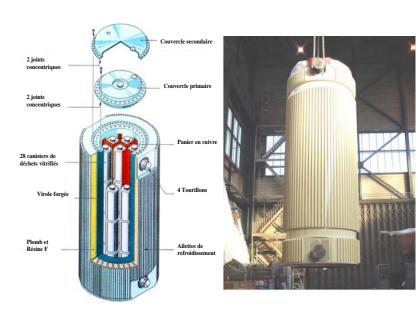
+ AVM and Phenix canisters with moderate thermal output

-) Waste classification
 - ☐ Type B transport

2. Disposal inventory

ILW-LL Packages

- Very large variety of waste
 - ☐ Metal envelope or concrete shell
 - ☐ Mass from 300 kg to 7 t
 - ☐ Diameters from 0.4 m to 1.8 m
- Three major categories (2009 Inventory)
 - ☐ Bitumen sludge (20 to 30%)
 - ☐ Technological wastes (~50%)
 - + Includes old waste in small amounts with specific conditioning
 - ☐ Structural wastes (15 to 20%)
 - + hulls and end pieces (CSDC)
-) Waste classification
 - ☐ Mostly to be transported in Type B packages
 - + Total activity above A2
 - ☐ A few to be acceptable in IP2 packages as LSA II
 - + specific activity < 10⁻⁴ A2/g
 - + some bitumen waste, some cemented filtration sludge



Cask needs

Is the waste already transported?

HLW: mostly yes

- Existing HLW transport solutions
 - ☐ TN28, TN81, Castor: certified Type B cask
 - + 28 glass canisters
 - + 56 KW
 - + > 110 t
 - □ Dedicated to CSD-V

ILW-LL: only a few recent cases

- Type B transport solutions
 - ☐ are in operation for CSDC (hulls & end pieces)
 - □ will soon be in operation for La Hague bitumen waste
- Need to develop adequate ILW-LL transport solutions (Type B and IP2)

HLW

Areva's La Hague glass canisters (CSDV) have already a transport cask

A transport solution for AVM and Phenix canisters has to be defined
□ A cask similar to TN28 could be developed
+ But smaller capacity due to increased diameter of canister
□ AVM storage facility has to be adapted in order to load these casks
+ Impact on cask weight and dimensions constraints

ILW-LL

- Ongoing development of ILW-LL Type B casks (launched by Areva)
 - + Casks for CSDC (compacted hulls & end pieces): 36 canisters, around 120 t
 - + TN 833 for bitumen waste :12 drums, around 45 t
 - + Cask for CBFC'2
 - ☐ It will provide solutions for transport to the future repository
- Other ILW-LL (large variety) will need new casks developments
 - ☐ Either design of <u>specifically waste dedicated</u> casks
 - ☐ Either design of a <u>multipurpose</u> cask (for wastes in low quantities)
 - + With adaptation of the internals for each specific waste geometry

Conveyance systems

Road transport equipment

For 110 t cask

Railway transport equipment

- For 110 t cask
- For smaller cask (40 t)
 - ☐ Shorter wagons compatible with secondary freight I

For future transports to the repository

- Railway transport is an interesting solution
 - □ Appropriate
 - + Heavy transports (cask 75 t to 110 t)
 - + Only 3 main production shipping sites
 - ☐ Reduce local impact of nuclear transports
 - + Minimize the number of convoys
 - + Environmental aspects
- Road transport still to be considered
 - ☐ Uncertainty on repository rail accessibility
 - ☐ La Hague and Marcoule are not directly connected to rail

Main transport route and flows

Three main shipping locations

-) La Hague
- Marcoule
-) Cadarache

Estimate of future waste flows

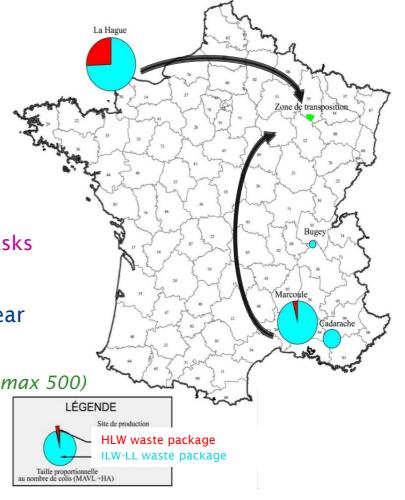
) HLW: 400 to 600 primary packages/year

☐ 1 or 2 casks/month in TN28 or TN81 casks + 28 CSDV/cask

) ILW-LL: average 2500 primary packages/year (80 years)

☐ Average 300/350 cask transports/year

+ Variation due to waste (min 200 & max 500)


☐ By train, more than 1 convoy/week

+ Convoy of 10 wagons max

☐ Operating scenarios might lead

+ to work by campaigns

+ to modify the yearly figure

4. Infrastructure options - A benchmark: La Hague

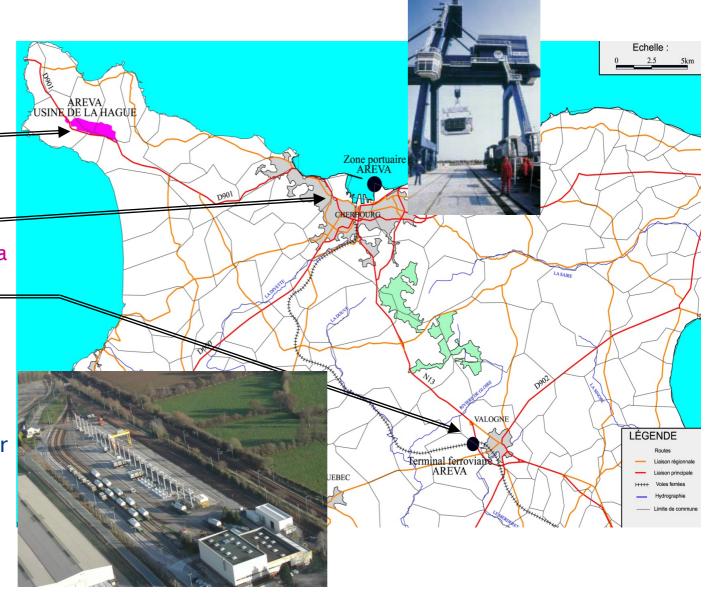
A multimodal site

La Hague:

Road shipment

Cherbourg:

Sea terminal


☐ Japan, Australia

Valognes:

Railways terminal

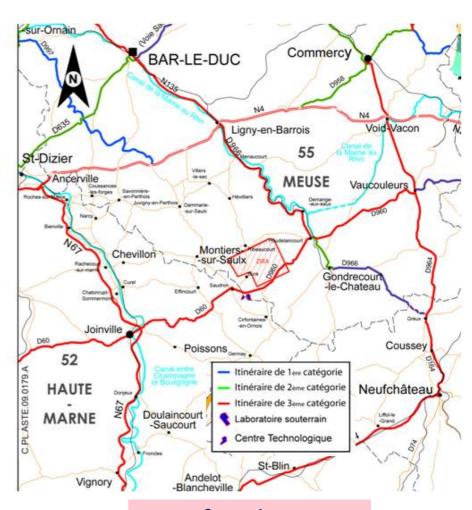
Present heavy cask flows

- papprox 200 SF/year
-) 20 HLW/year

4. Repository infrastructure options

Existing transport paths in the Meuse/Haute-Marne area

Theoretically possible access


- » Road
- Railways
- Waterways

Two main pathways

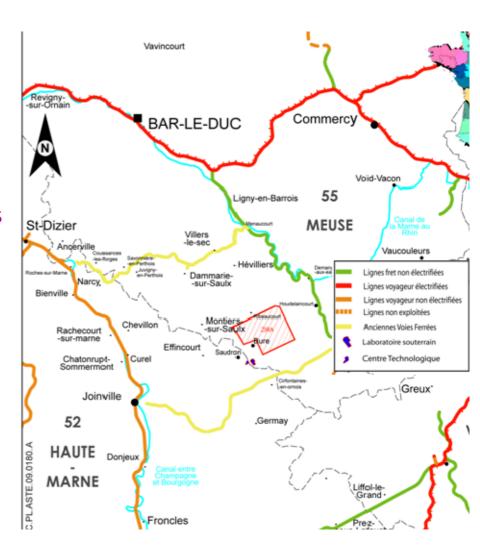
-) Ornain valley in Meuse
- Marne valley in Haute Marne

The impact of the siting process

- 30 km² "ZIRA" selected in 2010
- Seek railway access to surface installations

Map of road accesses

New infrastructures will be needed to connect the future repository


11

4. Repository infrastructure options: Railway

Railway infrastructure

- Main railways in red (electrified) and orange (non electrified)
 - ☐ St Dizier/Joinville in Haute Marne
-)) A one way small freight line
 - ☐ from Gondrecourt to Ligny en Barrois (Ornain Valley)
- Former lines (yellow) dismantled
-) Two options to be considered
 - □ New infrastructure up to the repository future site
 - + If accessible
 - ☐ A rail terminal and a final approach by road
 - + similar to Valognes for La Hague

Transport is a key factor in nuclear operations

- Questions and solutions on transport have to be anticipated
 - ☐ Yearly transport flows to the repository is a fundamental data
 - + based on transport capabilities from the producer's sites
 - + for investment optimisation of the surface installations of the repository
 - + for impact studies
 - ☐ Agreement of new Type B transport casks is also a long process

In order to build public confidence, reliable transport options have to be prepared as early as 2012/2013.

- Railway transport solutions, with road alternatives
- New infrastructures (not only on the repository site)

Transport is already part of the repository siting process and will be an issue in the public debate

13