

The Influence of Thermal Expansion on Package Tightness during Fire

Frank Koch¹ Claus Bletzer Jens Sterthaus

BAM Bundesanstalt für Materialforschung und -prüfung, Germany 1 since 2009 ENSI Eidgenössisches Nuklearsicherheitsinspektorat, Switzerland

Patram 2010, London, UK

Outline

- Introduction
- Parameters
- Evaluation of leak tightness
- Conclusions

Accident conditions of transport

Test conditions

• Drop test: 9 m drop on unyielding target

• Puncture test: 1 m drop on steel bar

• Fire test: 30 minutes at 800°C

Accident conditions of transport

Test conditions

• Drop test: 9 m drop on unyielding target

• Puncture test: 1 m drop on steel bar

• Fire test: 30 minutes at 800°C

Requirements

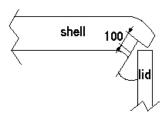
- Integrity
- Leak Tightness
- Shielding
- Criticality Safety

Accident conditions of transport

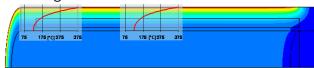
Test conditions

- Drop test: 9 m drop on unyielding target
- Puncture test: 1 m drop on steel bar
- Fire test: 30 minutes at 800°C

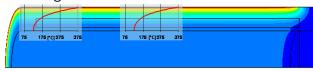
Requirements


- Integrity
- Leak Tightness
- Shielding
- Criticality Safety

- Thermal expansion of shell and lid during fire
- Possible change of sealing configuration
- Effect activity release
- Situation lasts for minutes in opposite to the drop event



- Thermal expansion of shell and lid during fire
- Possible change of sealing configuration
- Effect activity release
- Situation lasts for minutes in opposite to the drop event



Temperature gradients

Temperature gradients

Deformations induced by thermal expansion

Parameters

Studied:

- Temperature and wall thickness
- Shell material
- Drop test result: shock absorber

Temperature gradient and wall thickness

Temperature gradient

<i>Gradient</i> K	Thickness mm	Stress outside MPa	Stress inside MPa
100	200	-175	205
200	200	-351	411
300	200	-526	616

Temperature gradient and wall thickness

Temperature gradient

Gradient K	Thickness mm	Stress outside MPa	Stress inside MPa
100	200	-175	205
200	200	-351	411
300	200	-526	616

Wall thickness

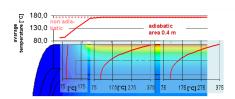
Gradient K	Thickness mm	Stress outside MPa	Stress inside MPa
300	100	-547	595
300	200	-526	616
300	300	-508	635

Shell material

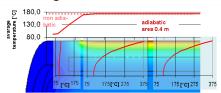
Cast iron and steel

Gradient	Thickness	Stress outside	0 1. 000	Material
		outside	misiac	
K	mm	MPa	MPa	
200	400	-209	282	cast iron
200	400	-324	437	steel

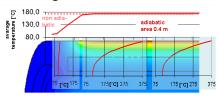
End shock absorber present

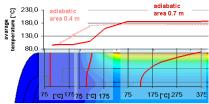


End shock absorber present



Effect

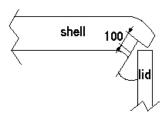



Main parameter: length of adiabatic area

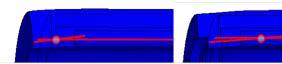
Main parameter: length of adiabatic area

• Direct measurement during fire test nearly impossible

- Direct measurement during fire test nearly impossible
- Therefore analytical approach applied


- Direct measurement during fire test nearly impossible
- Therefore analytical approach applied
- Distance of shell/lid gap determined

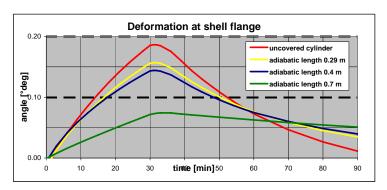
- Direct measurement during fire test nearly impossible
- Therefore analytical approach applied
- Distance of shell/lid gap determined
- Compared with seal recovery



- Direct measurement during fire test nearly impossible
- Therefore analytical approach applied
- Distance of shell/lid gap determined
- Compared with seal recovery

Length of adiabatic area: rotation point

Length of adiabatic area: rotation point



Angles and gaps

Case	Angle	Gap at seal position
Non-adiabatic area	0.186°	0.325 mm
Adiabatic area of 0.4 m	0.143°	0.250 mm
Adiabatic area of 0.7 m	0.073°	0.127 mm

Time influence

Conclusions

Investigated issues

- Thermal expansion during fire test (ACT) is studied
- Identified parameters:
 - Temperature gradient
 - Wall thickness
 - Shell material
 - Shock absorber presence after drop test
 - Shock absorber design

Conclusions

Consequences

- Shell/lid deformations (angle)
- Increased shell/lid gap at seal area
- Potential release of radioactive material
- Situation lasts minutes in opposite to short-time drop event
- ... results in a significant safety issue