Thermo-Mechanical Study of Bare 48Y UF₆ Containers Exposed to the Regulatory Fire Environment

PATRAM 2010 October 3-9, 2010 London, UK

<u>Carlos López</u>, Charles Morrow, and Douglas J. Ammerman Sandia National Laboratories

Marc-André Charette Cameco Corporation

Tim Korbmacher
URENCO Enrichment Company Limited

Background

- Commercial quantities of natural (or depleted) uranium hexafluoride (UF₆) are transported internationally in mild steel cylinders
- The most common packaging is the 48Y cylinder (described in ANSI N14.1 and ISO7195 standards)
- Transport regulations require the package to survive a 800°C fully engulfing fire environment for 30 minutes
- To meet this requirement, thermal protectors are used on 48Y cylinders (excluding North America)
- This thermal study will attempt to optimize the thermal protection currently used on 48Y cylinders
 - Using coupled multi-physics codes

Regulatory Requirements

- Since the 1996 Edition of the TS-R-1 (or ST-1)
 - Three tests relevant to UF₆ package certification
- Packages need to withstand:
 - Structural test without leakage (hydrostatic pressure test)
 - Free drop test without loss of UF₆
 - Free drop test was a new requirement in the 1996 Edition of TS-R-1
 - Resulted in a new valve protector assembly and new plug design
 - Thermal test without rupture of the containment system
 - Thermal test was new and demonstration of a bare 48-inch cylinder to withstand the standard IAEA fire test conditions was not available
 - A Coordinated Research Programme (1992-1998) resulted in no consensus
 - -Survival time calculated ranged from ~25 to 35 minutes

48Y UF 6 Transport Container and Thermal Protection

Simple 48Y Fire Model: Event Progression

Simple 48Y Fire Model: Liquid Level Progression

Simple 48Y Fire Model: UF₆ Thermodynamics

2000 1800

1600

1200

Basis: Material

specified per ISO 7195 is ASTM 516, Gr Unspecified. Ultimate Strength per Shirai

Simple 48Y Fire Model: Factor of Safety

Approximate Time (s)

Where Does this "Simple Model" Leave Us?

- The vessel will probably survive a 30 minute fire
 - Small margin for error
 - Assumptions & uncertainties need examination
 - Thermal physics depend on many intangibles
 - Simplified model confidence uncertain
- Comprehensive modeling will help advance current knowledge and better define the margin of safety

Scope of the Thermal Study

- Study will advance previous findings
- Coupled multi-physics modeling will be used to evaluate this complex thermo-mechanical problem
- Objective of the study:
 - Optimize thermal protection required for a 48Y cylinder
 - Using the existing BTP and CTP
 - Predict the thermo-mechanical response of the package
 - Using the optimized thermal protection
 - Include the survival time at the regulatory test conditions

Optimization Through Modeling

- Coupled models using Sandia codes will be created
 - Fire modeling, heat transfer, structural response
 - Modeling will be performed on large supercomputers
- Initial simulations will assume uniform 800°C heating
 - Realistic fire modeling will be added
- Estimates of failure times based on relevant existing data
- UF₆ will be modeled based on currently available data
- Several geometries will be evaluated
 - Analysis of container without thermal protectors will be used as reference and for comparison with previous studies
 - Different configurations of the thermal protectors

Coupled Thermo-Mechanical Analysis Failure Analysis (Example)

Uneven Heating

Structural Response

Additional Consideration: Evaluation under Realistic Fire Environment

- Uneven fire-like heating reflects a realistic thermo-mechanical response of a cylinder in an accident scenario
 - May make cylinder regions more likely to fail (localized peaks)
 - May slow the UF₆ phase change resulting in less cylinder pressurization (time and spatial variable heat input)
- Sandia state-of-the-art CFD fire codes are coupled with heat transfer & mechanical codes
 - CFD fire code can realistically model the fire environment
 - Coupled heat transfer code can accurately track components' heating
 - Mechanical code can track deformations and cylinder rupture
- Possible to model the UF₆ inside the cylinder
 - Coupling codes to obtain unique and advanced results
- Modeling performed on massive parallel supercomputers

Realistic Fire Simulation (Example)

Summary

- Why conduct this study?
 - Computer modeling improvements since previous studies
 - Codes advances, coupling, & computing power will help quantify safety margin
- It is expected that a comprehensive re-evaluation today will advance the current of knowledge
- Optimize use of current thermal protectors

