

The Transport of Large Front End Facility Components from Decommissioning Operations

Jürgen WERLE

- Nuclear fuel cycle facilities at the end of their operational life span => decommissioning / dismantling
- Large components need to be transported
- Nuclear Power Plants:
 - reactor vessel lids, steam generators, pressurizers
 - Very large, heavy, activated
 - Small in numbers
 - Special Arrangements
 - Transport experience in Germany, Sweden, USA and others
 - Preference for coastal or inland water transport
 - No outer packaging

Front End Facility Components

- Some very large components, especially in gaseous diffusion enrichment plants
- Large number of identical components
- Non activated, surface contaminated only
- Very low dose rates
- Dismantling is an industrial process over several years
- Feasibility
- Cost efficiency is very important

AREVA Georges Besse Gaseous Diffusion Plant

WORLD NUCLEAR TRANSPORT INSTITUTE

4 buildings, 1400 diffusers in 70 groupes of 20 stages

AREVA Georges Besse Gaseous Diffusion Plant

WORLD NUCLEAR TRANSPORT INSTITUTE

	_
USG Diffuser with its support	
Quantity	720
Length	6 900 mm
Width	6 102 mm
Height	12 440 mm
Total mass	87 000 kg
Surface in contact with U	358 m ²
Est. U mass after rinsing	19 kg
Est. fissile mass (U-235)	475 g

Topics studied by the WNTI Waste Transport Working Group:

- Special Arrangements
- Characterisation and Classification
- Fissile Exceptions

WORLD NUCLEAR TRANSPORT INSTITUTE

Special Arrangements

- Cater for
 - Unusual transports
 - Newly emerging transport flows
 - One-off (often back-end) transports
- Require a full safety case
- Considered as just as safe as any other types of transport
- Only "special" in name, yet still:
 - TS-G-1.1 § 238.1:
 - « the use of special arrangements should not be taken lightly »

Improve the perception by all stakeholders of special arrangements

Special Arrangements

- WORLD NUCLEAR TRANSPORT INSTITUTE
- <u>Until now</u>, no particular consideration given to front end transports
- New revision cycle of TS-R-1/TS-G-1.1 20XX edition:
 - Draft of new appendix VII, which recommends Special Arrangements also for front end transports
- Made possible by:
 - Excellent track record of past transport operations worldwide
 - Feed back from the nuclear transport industry to the regulator of newly emerging waste flows
 - Communication between all stakeholders, where WNTI plays an important role

Characterisation and Classification

- Natural Uranium enriched up to 20% in U-235
 - A2 value unlimited
 - LSA-I material (under certain conditions)
 - Potentially fissile
- Contaminated objects
 - SCO-I classification possible (under certain conditions)
 - Radiation dose rate very low

Practical issues

- Surface contamination of large inner surface areas
 - Large quantities of Uranium
 - Fissile, when mass of U-235 more the 15 grams per packaging
- Complex or inaccessible inner structure
 - Physical examination not possible/practical
 - No SCO classification possible since regulatory contamination measurements on inaccessible surface areas impossible
 - No LSA characterisation possible, since accumulation of material cannot be excluded

Characterisation and Classification

- Over-classification of packaging
 - Type A packaging
 - Potentially for fissile material

No apparent new safety issue!

Only the size and complex structure of large components leads to over-classification!

Characterisation and Classification

- New proposals
 - Objects contaminated by LSA-I material => can be classified as SCO-I immediately
 - Emerging new technology: use of external dose rate measurements to show non accumulation of material
- TS-G-1.1 § 310.2
 - Encourages the use of new techniques and new controls
 - Proposes the use of Special Arrangements for these cases
- WNTI encourages the stability of the regulations

No change to regulations needed!

Show the way forward by using Special Arrangements

Fissile Exceptions

WORLD NUCLEAR TRANSPORT INSTITUTE

- Existing fissile exceptions:
 - Uranium enriched to under 1% of U-235
 - U-235 limited to 15 grams per packaging (+ limits on consignment)
 - But for Uranium enriched to only 5% the criticality-safe mass is much higher
 - Beryllium is limited to 1% of the maximum consignment mass = 4 grams
 - Be is normally part of a Copper alloy which acts as neutron poison

Classified as fissile material without a scientific need!

WORLD NUCLEAR TRANSPORT INSTITUTE

Fissile Exceptions

- Revision process of TS-R-1/TS-G-1.1
 - Takes into account a great number of these issues
- WNTI TS-R-1 Working Group
 - Representing the industrial perspective
 - Observer to TRANSSC
 - Made several proposals to changes in TS-R-1
 - Provided additional expertise to substantiate views
 - For more details, see WNTI presentation on the subject

Proposed changes to TS-R-1 and TS-G-1.1 are a great help to the nuclear transport industry

WORLD NUCLEAR TRANSPORT INSTITUTE

- There are no new safety issues
- Proposed changes to TS-R-1 and TS-G-1.1 will resolve most of the criticality issues
- New techniques and controls will help with characterisation and classification
- Special arrangements will be used more commonly
- Public perception of special arrangements needs to be improved
- Involvement of WNTI has been essential in obtaining these results and will continue to do so in the future

AREVA Georges Besse Gaseous Diffusion Plant

WORLD NUCLEAR TRANSPORT INSTITUTE

Transport equipment used for the transport of diffusers

The Transport of Large Front End Facility Components from Decommissioning Operations

Thank you for your attention!

Any questions?

Contact: jurgen.werle@areva.com