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Rolls-Royce has designed a fresh fuel 
package.
The design incorporates large 
amounts of polyurethane foam.
A criticality assessment must 
consider the effect on the neutron 
multiplication factor of foam 
especially when burnt.

Introduction
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Introduction (continued)

Rolls-Royce has adopted the following 
approach to find a conservative yet 
reasonably realistic representation of 
burnt foam.
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The following were investigated
The effect of varying the elemental 
composition of the foam in particular 
hydrogen and carbon.
The experimental analysis of burnt foam.
Extreme physical representation of burnt 
foam.
The effect on the keff of adding water to 
burnt foam.
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Fresh fuel package design
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Polyurethane foam

The polyurethane foam used in the 
package:

Impact absorbing.
Flame retarding.
Performance across across all three 
axes of compression is almost isotropic.
There is evidence that the properties of 
the foam do not degrade through the 
design-life of the package.
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Polyurethane foam under fire

Under fire the foam will intumesce (its 
surface swells) and degrade from the hot 
surface inwards to leave a charred material 
that continues to act as a rigid thermal 
barrier.
In addition gases are released removing 
much of the heat energy.
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Thermal test
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Earlier work on combustion of organic 
materials.

Derek Putley (ANSWERS Seminar, UK, 
2006).
Examined what can happen to organic 
material under combustion especially in the 
absence of oxygen.
Combustion of organic material is complex.
In the absence of oxygen hydrogen and 
carbon monoxide gases released leaving 
lower density carbon compounds.
Work reviewed by the UK Department for 
Transport (DfT).
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Recommendations following DfT Review

Need to consider changes in the 
composition of the material in particular 
hydrogen depletion.
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Calculational methods

Used MONK8B using the DICE JEF2.2 nuclear 
data library.
Created detailed MONK models of the fuel and 
fresh fuel package.
Sensitivity studies were ran on finite arrays of 
the packages.
Note sensitivity studies carried to values that 
are no physically possible to demonstrate 
trends.
One standard deviation is 0.0008.
Number densities of nuclides in the foam 
derived from the manufacturing specifications.
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Modelling of unburnt foam

Sensitivity studies were carried out to 
determine the elemental composition of 
the foam that would maximise the keff.
Calculations were carried out where one 
of the chemical elements was at the 
maximum or minimum limits of the 
weight fraction allowed by the 
manufacturing specification.
Unburnt foam composition given by the 
combination of the changes that 
increased the keff (even if the 
composition is not physically possible).
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Modelling of impact damage to foam (1)

In normal operation and accident 
conditions the package can undergo 
impacts on a package face.
An impact on one face of each package 
could result in permanent compression 
of that package in that direction.  In a 
finite array of packages the fuel could 
become closer together (knockback).
Amount from knockback used in an 
accident came from finite element 
impact predictions and confirmed by 
drop tests.
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Modelling of impact damage to foam (2)

Knock-back applied throughout one side 
of the package.
Compressed foam modelled by 
increasing its density to conserve the 
amount of foam in the package.
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Baseline accident case.

No claim made that the package is watertight in 
an accident.
Ran a set of calculations to determine the most 
reactive differential flooding case using a finite 
array.  These cases include the knockback and 
unburnt foam.
The worst differential flooding case is flooding 
of the fuel with the rest of the package dry.
For this presentation this case will be used as 
a baseline to compare different representations 
of burnt foam (keff=0.7375).
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Extreme physical representations of 
burnt foam (1)

Soot
Modelled as spheres of carbon randomly 
distributed in void.
Void represented as very low density water.
Vary volume fraction of the spheres in foam but 
keep radii of the spheres within 0.0005 to 
0.001cm

- Spheres made of carbon of the same number 
density as in unburnt foam.

- Spheres made from carbon of higher density 
than in the foam (Used amorphous carbon).

Vary radii of the spheres but keep the volume 
fraction fixed.
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Volume fraction varying, maximum 
sphere radius is 0.001cm.
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Sphere radii varying up to 0.6cm, 
volume fraction = 10%.
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Extreme physical representations of 
burnt foam (2)

Assume foam completely breaks down 
to leave a carbon layer on the surface of 
the steel shell of the inner cavity.
Vary thickness of carbon.

Carbon layer made of carbon of the 
same number density as in unburnt
foam.
Carbon layer made of carbon of higher 
density than in unburnt foam 
(amorphous carbon).
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Variation of the carbon layer thickness 
(up to 6cm)
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Extreme physical representations of 
burnt foam (3)

Sensitivity studies such as varying the volume 
fraction of the carbon spheres in soot and the 
thickness of the carbon layer do not conserve 
the amount of carbon.
Amorphous carbon results but the amount of 
carbon is the same as in unburnt foam:

Soot – keff ~0.76
Carbon layer ~ 0.77.

Suggest that the keff is determined more by 
the amount of carbon rather than the physical 
representation of burnt foam.
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Chemical composition of foam

Burnt foam assumed to maintain its 
shape.
Sensitivity studies carried out to remove 
one element at a time from the foam.

Two orders investigated.
Remove hydrogen first and then other 
elements to leave carbon.
Remove carbon first and then hydrogen.
Number density of the remaining 
elements unchanged.
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Removing elements from foam - results
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Representation of burnt foam Rolls-
Royce used in the criticality assessment

Hydrogen removed from the foam, and 
not changing the number densities of 
the remaining elements.
Conservative

Unlikely that all hydrogen will be 
depleted in a fire.
Some carbon will also be removed.

Reasonably realistic
Thermal tests show that although there 
is charring throughout the burnt foam, 
the burnt foam kept its shape.
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Adding water to burnt foam

Water in burnt foam represented by a 
mush in MONK.
Sensitivity study carried out where the 
number densities of the hydrogen and 
water were varied.
Results show that adding water to burnt 
foam decreases the keff so more 
conservative to model the foam dry.
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Adding water to burnt foam - results
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Conclusions

A number of sensitivity studies were 
performed to determine a conservative 
but realistic representation of burnt 
foam.

We believe that these studies should be 
considered in criticality assessments of 
packages containing large amounts of 
foam.
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