PATRAM 2010 [T21, 432]

Study on Cross section Libraries for Shielding Design of Spent Fuel Cask and Cask Storage Facility

Oct. 6, 2010

- T. Takahashi, T. Tsukiyama, Y. Nemoto, Hitachi-GE Nuclear Energy, Ltd., Japan
- S. Nemezawa, Ibaraki-Hitachi Information Service Co., Ltd., Japan

Introduction

- 1-1 Background
- 1-2 Purpose

1-1 Background

- **Dose limits** of regulation for casks in Japan
 - •2 mSv/h at the surface
 - •0.1mSv/h at the 1m point from the surface
- Typical calculation method for the licensing of casks
 - [1] Dose calculation
 - Calculation code : Sn transport codes (ANISN,DORT)
 - Cross-section library : DLC23/CASK
 - [2] Source term calculation
 - Calculation code : ORIGEN
 - Cross-section library : BWRU
 - ◆ These two libraries are relatively old and some problems were pointed out_{© Hi}

Fig. Spent fuel cask

lear Energy, Ltd. 2010. All rights reserved.

7-1 Background

- Problems pointed out previously
 - [1] **DLC23/CASK** (Dose calculation)
 - Calculation results **underestimate** the measurement values in some case such as the model with thick iron
 - [2] **BWRU** (Source term calculation)
 - Calculation results for low burn-up fuels underestimate the measurement values of neutron
 - Burn-up level of recent fuels is out of range covered by BWRU
- While some other updated libraries are available to use
 - [1] Dose calculation
 - MATXSLIB (JENDL3.3)
 - VITAMIN-B6 (ENDFB-VI)
 - [2] Source term calculation
 - **ORLIB-J33** (JENDL3.3)
 - **GE8x8-4** (ENDFB-VI)

7 -2 Purpose

Purpose

- (i) Confirm the safety margins of results conducted by using currently-used library
- (ii) Assess the applicability of the updated libraries

• Contents of this presentation

- [1] Dose calculation
 - (i) Calculate neutron dose in iron
 - (ii) Calculate gamma dose in iron
 - (iii) Discuss the applicability of each libraries
- [2] Source term calculation
- (i) Define the calculation conditions (burn-up level)
- (ii) Discuss the applicability of each libraries

2 Dose calculation

- 2-1 Neutron dose calculation in iron
- 2-2 Gamma dose calculation

2

-1 Neutron dose calculation in iron

Configuration of benchmark test^[1] and calculation model

Detectors and its working energy range

Detector	Working energy range
$^{32}\mathrm{S}(\mathrm{n},\ \gamma\)$	1.6 MeV < E
¹¹⁵ In(n, n')	0.4 MeV < E
¹⁰³ Rh(n, n')	40 keV < E
$Cd\{^{197}Au(n, \gamma)\}$	0.55eV-100keV

[1] J. Butler, et al., SINBAD ABSTRACT NEA-1517/34

Winfrith Iron Benchmark Experiment (ASPIS)

-1 Neutron dose calculation in iron

Attenuation of reaction rate for ¹⁰³Rh in iron

- ◆ DLC23/CASK and VITAMIN-B6 underestimate the measurement for iron more than 50cm thick.
- ◆ MATXSLIB shows good agreement with the measurement

-1 Neutron dose calculation in iron

Attenuation of reaction rate for ¹⁹⁷Au in iron

◆ DLC23/CASK underestimate the measurement for iron more than 50cm thick

2

-2 Gamma dose calculation

Gamma dose attenuation in iron

Library	Energy-group structure	
mcplib02 (MCNP5)	- (continuous)	
MATXSLIB-J33	42 groups	
VITAMIN-B6	42 groups	
DLC23/CASK	18 groups	
MATXSLIB-J33 (Edt.)	18 groups	

- ◆ Only DLC23/CASK overestimated the measurement
- ◆ MATXSLIB-J33(Edt.) is an edited library having 18 energy-group structure as contracted from MATXSLIB-J33.

-2 Gamma dose calculation

Libraries

- MATXSLIB-J33
- DLC23/CASK, MVITAMIN-

Libraries

- MATXSLIB-J33 (Edt.)
- DLC23/CASK

◆ Overestimation shown by using DLC23/CASK caused by the coarse energy-group structure

-2 Gamma dose calculation

Comprehensive evaluation of applicability to shielding design

	DLC23/CASK	MATXSLIB-J33	VITAMIN-B6
Neutron	Δ	0	Δ
	Underestimation	Good	Underestimation
Gamma	Δ	0	0
	Overestimation	Good	Good
Comprehensive	Δ	0	0
	Fair	Good	Good

- ◆ DLC23/CASK and VITAMIN-B6 can be applied to shielding design of general shaped casks with iron less than 50cm thick.
- ◆ MATXSLIB-J33 would be **better** library due to its better agreement with measured values.

3 Source term calculations

- 3-1 Background
- 3-2 Examination method
- 3-3 Result and discussion

3 -1 Background

- **Problems** of **BWRU** pointed out previously
 - Calculation results for low burn-up fuels underestimate the measurement values of neutron
 - Burn-up level of recent fuels is out of range covered by BWRU (burn-up range covered by BWRU : less than 27.5 (GWd/t)

Purpose

 Confirm the safety margins of the total amount of neutron conducted by using BWRU and updated libraries

(ORLIB-J33, GE8x8-4)

3 -2 Examination method

Benchmark

- SF-98^[2] was selected as high burn-up
 - Type of reactor : BWR
 - Initial enrichment of ²³⁵U: 3.91 (wt%)
 - Average void ratio : 43 (%)
 - Burn-up : 27-44 (GWd/t)

Examination method

 Total amount of neutron was regarded as the same amount of ²⁴⁴Cm.
(The contributing rate of ²⁴⁴Cm was more than 90%)

• Total amount of ²⁴⁴Cm was calculated as sum total at five points as shown in right Fig.

Fig. Sampling points of the fuel rod

3 -3 Result and discussion

Calculation conditions

- Same condition as benchmark except void-ratio
- Void-ratio

BWRU: 40% (Library constraint)

ORLIB-J33: 40%, 70% (Library constraint)

Calculation results

Relative amount of ²⁴⁴Cm calculated as C/E

	ORIGEN2.2			
	BWRU	ORLIB-J33 (JENDL3.3)		
	Void ratio = 40	Void ratio = 40	Void ratio = 70	
C/E	1.03	0.92	1.14	
(Total of 5 point)				

- ◆ BWRU : results have several percent safety margins compared to measured values
- ◆ ORLIB-J33 : Void-ratio is recommended to be set by 70% to avoid underestimation

3 -3 Result and discussion

Calculation conditions

- Same condition as benchmark except void-ratio
- Void-ratio

GE8x8-4: 43%, 50%, 60% (No constraint)

Calculation results

Relative amount of ²⁴⁴Cm calculated as C/E

	ORIGEN-ARP			
	GE8x8-4 (ENDF/B-VI)			
	Void ratio = 43	Void ratio = 50	Void ratio = 60	
C/E	0.96	1.02	1.09	
(Total of 5 point)				

▶ GE8x8-4 can be applied to shielding design when the void-ratio is set appropriately

4 Conclusion

[1] Dose calculation

DLC23/CASK and VITAMIN-B6 can be applied to shielding design of general shaped casks with iron less than 50cm thick.

MATXSLIB-J33 would be **better** library due to its better agreement with measured values.

[2] Source term calculation

BWRU will be able to applied to shielding design to define the neutron strength of high burn-up fuel and results have several percent safety margins.

ORLIB-J33 and GE8x8-4 also can be applied to shielding design by setting the void-ratio appropriately.

PATRAM 2010 [T21, 432]

END

Study of Cross section Libraries for Shielding Design of Spent Fuel Cask and Cask Storage Facility

Oct. 6, 2010

T. Takahashi, Hitachi-GE Nuclear Energy, Ltd., Japan