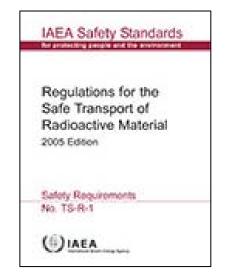
Perturbation Analysis for Demonstration of Reactivity in Criticality Safety Analyses

Tanya Sloma and Peter Vescovi October 5, 2010 London, UK



Criticality Safety Analysis Guidance

TS-R-1, paragraph 673

Where the chemical or physical form, isotopic composition, mass or concentration, moderation ratio or density, or geometric configuration is not known, the assessments of paras 677–682 [refer to the assessment of an isolated, individual package and package arrays for

normal and accident conditions] shall be performed assuming that each parameter that is not known has the value which gives the <u>maximum neutron multiplication</u> consistent with the known conditions and parameters in these assessments.

Overview

- Perturbation Methods
 - Direct
 - Analytical
- Applications
 - Contents parameter selection
 - Burnable absorber rod distribution
 - Validation evaluations
 - Uncertainty analysis
 - Allowances

Perturbation Theory Benefit

- Evaluate the relative worth of a parameter
- Determine the sensitivity of the k_{eff} with respect to changes in the system
- Results in simplified contents specification
 - Minimize potential, unnecessary restrictions that transport package requirements would impose on the fuel bundle design
 - Simplify package approval document

Direct Perturbation Method

- Unknown parameter
 - varied and evaluated through complete calculation sets repeated
- Worth of variation determined by comparison

$$\rho_{worth} = \frac{k_{\text{nominal}} - k_{perturbation}}{k_{\text{nominal}}}$$

Analytical Perturbation Method

- Use of an analytical tool
 - SCALE sensitivity and uncertainty (S/U) analysis tool
 TSUNAMI-3D
 - Calculates adjoint-based first-order linear perturbation theory sensitivity coefficients
 - Sensitivity Coefficient $\Delta keff / keff$ $\Delta \Sigma / \Sigma$
 - Validated by central difference direct perturbation

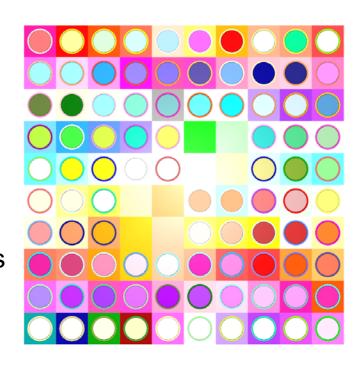
Applications

- Criticality safety transport analyses
 - Contents parameter selection
 - Burnable absorber rod distribution
 - Validation evaluations
 - Uncertainty analysis
 - Allowances

Contents Parameter: BWR Burnable Absorber (BA) Rods

- Background
 - Burnable absorber rods within a BWR assembly are utilized to achieve desired core performance objectives
- Methodology

Assessment of each location


Evaluate selected Gad rod pattern Ensure most reactive and realistic model

Burnable Absorber Rod Evaluation

SCALE Models

- Each fuel rod 5.0 wt% enriched
 UO₂ + 0.1 wt% Gd₂O₃
 - Minimizes flux alteration
- Each fuel rod material has a unique material identifier
 - Accounts for individual location effects
- Sensitivity coefficients integrated over energy and region for ¹⁵⁷Gd

BA Rod Pattern Selection Example

- Identify least worth locations
- Symmetry rule
 - Calculate average worth among pairs
- Select pattern for criticality safety analyses

Least worth

Highest worth

Validation of Analytic Perturbation

Central difference direct perturbation

$$S_{k,\alpha} = \frac{k_{\alpha^{+x^{2k}}} - k_{\alpha^{-x^{2k}}}}{k_{nominal}} \times \frac{100(\%)}{2x(\%)}$$

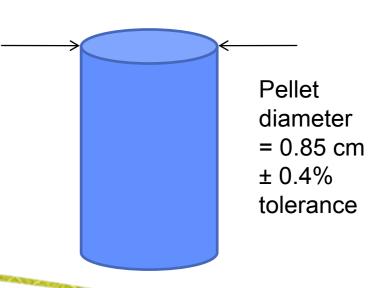
Case	Number Density Multiplier	Sensitivity Coefficient	Percent Difference
Fuel Rod	1 – nominal	-0.190 ± 0.0003	1.4%
	±10%	-0.192 ± 0.0004	
Infinite Bundle Array	1 – nominal	-0.115 ± 0.0013	10.7%
	±10%	-0.128 ± 0.0012	

Uncertainty Allowance Assessment

- Two allowance categories
 - (1) Analytical perturbation uncertainty
 - Material and fabrication tolerances
 - (2) Direct perturbation uncertainty
 - Geometric or material representation

Analytical Perturbation: Material and Fabrication Tolerances

Reaction rate


$$R = \phi \Sigma = \phi N \sigma$$
 $\Delta R = \phi \frac{N_A}{M} \Delta \rho \sigma = \phi N \Delta \sigma$

Sensitivity coefficient

$$\frac{\Delta keff/keff}{\Delta \Sigma/\Sigma} = \frac{\Delta keff/keff}{\Delta \rho/\rho}$$

• Tolerance correlation

$$-\frac{\Delta V}{V} \equiv \frac{\Delta \rho}{\rho}$$

Analytical Perturbation: Total Material and Fabrication Uncertainty

Uncertainty associated with region

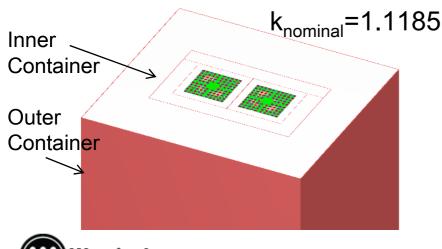
$$\left(\frac{\Delta keff}{keff}\right)_{i} = \left[\frac{\Delta keff/keff}{\Delta \Sigma/\Sigma}\right]_{i} \cdot \left(\frac{\Delta V}{V}\right)_{i}$$

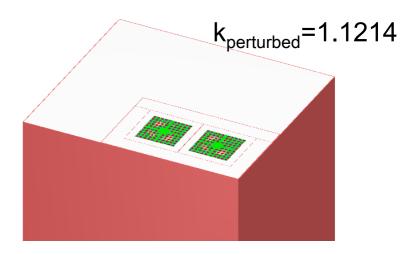
Simple summation

$$\left(\frac{\Delta keff}{keff}\right)_{TOTAL} = \sum_{i} \left(\frac{\Delta keff}{keff}\right)_{i}$$

Analytical perturbation uncertainty total

$$\Delta k_{u,analytical} = \left(\frac{\Delta keff}{keff}\right)_{TOTAL} \times k_p$$
 where $k_p = 1.0$




Direct Perturbation: Geometric or Material Representations

 Direct difference between the nominal and perturbed case

$$\Delta k_{u,direct} = k_{perturbed} - k_{nominal}$$

Example geometric representation: ∆k_{u,direct} = 0.0029

Total Uncertainty

Total combined uncertainty

$$\Delta k_u = \Delta k_{u,analytical} + \Delta k_{u,direct}$$

(1) Analytical perturbation uncertainty

$$\Delta \mathbf{k}_{\mathsf{u},\mathsf{analytical}}$$

- Material and fabrication tolerances
- (2) Direct perturbation uncertainty

$$\Delta \textbf{k}_{\text{u,direct}}$$

Geometric or material representation

Conclusions

Expanding the application of perturbation theory

- More efficiently define maximum k_{eff}
- Simplify contents specification
- Use analytical perturbation method for evaluating BA rod position worth in a BWR lattice
 - Valid method of optimizing the contents parameters
- Development of the uncertainty methodology shows relations between k_{eff} to nuclide density

