

Verification of activity release compliance with regulatory limits within spent fuel transport cask assessment

Annette Rolle, Bernhard Droste, Sven Schubert, Ulrich Probst, Frank Wille **BAM, Berlin, Germany**

Content:

- 1. Sealing system
- 2. Leakage mechanism and methods of calculation
- 3. Design leakage rates
- 4. Releasable radioactive content
 - effects of higher burn-ups

Limits for activity release from Type (B) packages (IAEA Safety Standards TS-R-1, § 657):

Normal conditions of transport (NCT): 10⁻⁶ A₂ per hour [Bq]

Accidental conditions of transport (ACT): A₂ per week [Bq]

(10 A_2 per week for Kr-85)

Sealing system of transport and storage casks

Metallic gasket, Helicoflex^R -type

One capillary leak model

correspond to

p_u - upstream pressurep_d - downstream pressure(p_u>p_d)

Standardized leakage rate Q_{SLR}

$$Q_{SLR} = 10^{-8} Pam^3 s^{-1}$$

$$Q_{SLR} = 10^{-5} \text{ Pam}^3 \text{s}^{-1}$$

$$Q_{SLR} = 10^{-2} \text{ Pam}^3 \text{s}^{-1}$$

Capillary diameter D

 $D = 1.5 \mu m$

 $D=10\mu m$

 $D=60\mu m$

Modes of flow

Gas flow

KNUDSEN

$$Q = \frac{\pi}{128} \cdot \frac{D^4}{\mu \cdot a} \cdot \frac{(p_u^2 - p_d^2)}{2} + \frac{\sqrt{2\pi}}{6} \cdot \sqrt{\frac{R \cdot T}{M}} \cdot \frac{D^3}{a}$$

particle-tight: Q_{SLR}<1E-4 Pam³s⁻¹

Liquid flow

POISEUILLE
$$L = \frac{\pi}{128} \cdot \frac{D^4}{\mu \cdot a} \quad (p_u - p_d)$$

liquid-tight: Q_{SLR}<1E-5 Pam³s⁻¹

Permeation

$$Q_P = P \cdot \frac{A}{l} \cdot \Delta p$$

P - Coefficient of permeation (m² s⁻¹)

A - Area normal to gas flow (m²)

a - Capillary length (m)

D - Capillary leak diameter (m)

p_d - Downstream pressure (Pa)

μ - Dynamic viscosity of fluid (Pa s)

p_u - Upstream pressure (Pa)

T- Temperature fluid (K)

M - Relative molecular mass (kg mol⁻¹)

R - Universal Gas constant (8.31J mol⁻¹K⁻¹)

*I*_n -Thickness of permeable material (m)

^p- Partial pressure difference (Pa)

Steps of release calculation (ISO 12807)

- Step 1: Determination of the total releasable activity
- Step 2: Determination of the equivalent A₂
- Step 3: Determination of the permissible activity release rate
- Step 4: Determination of the activity release rate due to permeation
- Step 5: Determination of the maximum permissible volumetric leakage rate
- Step 6: Determination of the maximum permissible equivalent capillary diameter
- Step 7: Determination of the permissible standardized leakage rate

Assessment criterion:

Permissible standardized leakage rate > Design leakage rate

Deducing of conservative design leakage rates

Design leakage rates:

III.32/ Rolle

- identify the efficiency limit of the sealing system.
- must not exeeded under routine (RTC), normal (NCT) or accidental (ACT) conditions of transport
- deduced from tests with real casks and cask components relating to normal and accidental transport conditions

Impacts to be considered (according to IAEA TS-R-1):

Routine condition of transport (**RCT**):

§612, §615

-acceleration (2g) in radial and axial directions

-operational temperature and pressure

Normal conditions of

transport (NCT):

§722

-free drop from 0.3m in transport position

Accidental conditions of

transport (ACT):

§726-728

III.32/ Rolle

- -free drop from 9m
- -1m puncture test
- 800°C, 30min
- -water immersion test

Possible effects on sealing system:

deformation or displacements of cask components

-unloading and/or moving of the seal (rotation or lateral sliding)

unloading, rotation possible

lateral sliding after lid displacement

Design leakage rates (Q_{DLR}) for metallic seals:

RTC: Q_{DLR}< 10⁻⁸Pam³s⁻¹ (attests the sealing system the regular assembly status)

NCT,ACT: Q_{DLR} depends on test results

No widening permitted above r_u !!! (except for short-term decompression during NCT or ACT impacts)

 $\mathbf{r}_{\mathbf{u}}$ = useful elastic recovery of the seal

Illustration of the usuable resilience r_u of a metallic seal

(Garlock Sealing Technologies, Helicoflex High performance sealing)

Definition of Terms

Y₀ = load on the compression curve above which leak rate is at required level

Y₂ = load required to reach optimum compression e2

 Y₁ = load on the decompression curve below which leak rate exceeds required level

e, = optimum compression

e_c = compression limit beyond which there is risk of damaging the spring

ru

(Garlock Sealing Technologies, Helicoflex High performance sealing)

- r_u = e₂-e₁ characterizes the efficency of the seal to absorb decompression,
- below Y₁ the leakage rate exceeds the level of 1E-8 Pam³s⁻¹
- Influence of time and temperature on r_u?

Design leakage rates for elastomeric seals (fluorocarbon - or EPDM-rubber):

RTC, NCT, ACT: Q_{DLR}< 10⁻⁵ Pa m³s⁻¹ (limited by permeation)

 BAM test program about time and temperature depending behaviour of new material mixtures

Releasable radioactive content

Section of a fuel assembly

Section of a rod

Fractions of releasable radioactive content

		NCT	ACT
-fraction of gases that are released due to a cladding breach	f_G	0.3	0.3
-fraction of volatiles that are released due to a cladding breach	$\mathbf{f_V}$	2E-4	2E-4
-fraction of fuel fines that are released due to a cladding breach	f_{F}	3E-5	3E-5
-fraction of CRUD that spalls off of rods	f_{C}	0.15	1.0
-fraction of rods that developing cladding breaches	f_B	0.03	1.0

(Values determined for burn-ups of 33 to 38 GWd/tU in Bl. Anderson, R.W.Carlson, L.E.Fisher: "Containment Analysis for Type B Packages used for Transport Various Contents", NUREG/CR-487, November 1996)

III.32/ Rolle

Do higher burn-ups have an effect on the release fraction of gases and volatiles?

Fission gas

release (%)

Gases

- dominated by Kr-85 and H-3
- generation increases linear with burnup
- release depends on temperature and fuel microstucture
- $f_G < 0.30$ up to 100 GWd/tU < 0.15 up to 80 GWd/tU

■ BAM accepts a release fraction of f_G= 0.15 up to 80 GWd/tU

Burnup (GWd/tU)

Volatiles

- potentially volatile nuclides Cs-137, Cs-134, Ru-106, Sr-90
- vapour pressures of relevant compounds like CsOH, RuO₂ and SrO are very low
- RuO₄ do not exist below 600°C

BAM accepts a release fraction of f_v=2E-4 as conservatively also for higher burnups

How do higher burn-ups could influence the fraction of rods developing cladding breaches?

Two effects of cladding breaches: - release of gas, volatiles and fuel particles

- increase of cask internal pressure

Higher burn-ups can cause :

- increasing embrittlement of cladding material by hydrogen uptaken and hydride reorientation
- increasing thickness of the oxid layer resulting in a cladding thinning and higher cladding stress
- increasing closing of fuel pellet -cladding gap and formation of bondings

BAM requires at higher burn-ups additional examination of cladding failure probability during NCT

Current measurements: - sufficient safety margin

- limited number per transport

encapsulation

Summary

- Standardized method for release analysis through a capillary leak is in ISO 12807.
- Q_{SLR}<1E-4Pam³s⁻¹ imply no particle release.
- Q_{SIR}<1E-5Pam³s⁻¹ imply liquid- tightness.
- Design leakage rates for NCT and ACT are deduced from real cask and component tests.
- Maximum permissible widening of sealing system is < r_u (except for short-term during NCT or ACT impacts).
- Influence of time and temperature on r_u has to be considered.
- Release fractions for gases and volatiles for burnups about 40 GWd/tU are also applicable for higher burn-ups up to 80 GWd/tU.
- Fraction of higher burn-up rods developing cladding breaches under NCT is still an open question.