

SAFE AND SECURE AT THE SOURCE

PATRAM 2010, London, England

Safe and Secure Life Cycle Management of Radioactive Sealed Sources

Grant Malkoske Chairman International Source Suppliers and Producers Association

ISSPA's Mission

To ensure that the beneficial use of radioactive sources continues to be regarded by the public, the media, legislators, and regulators as a safe, secure, viable technology for medical, industrial, and research applications

Membership:

- > Fifteen members in 9 countries
- Represents more than 95% of radioactive sources produced/distributed globally

Radioactive Materials – Vital Role in Promoting Public Health & Welfare

- Sterilization of single-use medical devices
- Medical treatment, diagnostics, therapeutics and palliation
- > Research and development
- Nuclear Energy
- > Electronics components (tantalum/niobium)
- Food safety and agricultural applications
- Industrial and safety applications (NDT of welds, pipelines, castings and engines; oil well logging)
- Law enforcement & counterterrorism

⇒ the radioisotope sector is broad and diverse, long established, with a culture of safety and security

Sizing the Importance of Radioisotopes and Equipment

- Cobalt-60 is depended upon to sterilize some 45% of all single-use medical supplies and devices in the world
 - sutures, catheters, syringes, heart valves, artificial joints and an estimated 80% of all surgeons' gloves
- Cobalt-60 is increasingly relied upon to enhance food safety and preservation
 - destroying e-coli
 - food for the immuno-compromised
 - packaging treatment
- ➤ Ir-192 is used in radiography equipment for nondestructive testing of infrastructures
 - availability of critical infrastructure depends on effective quality management processes

Sizing the Importance of Radioisotopes and Equipment

Cobalt-60 is used for treating cancer (45,000 treatments/day in >50 countries)

Caesium -137 is used in irradiation to prevent TA-GVHD following transfusions

Other applications of sources for level measurement, limit switches, oil well logging, density gauges.

Challenges to the Continued Beneficial Use of Radioactive Sources

- Import/Export challenges resulting from competing/conflicting regulatory agencies or regulations and a lack of global harmonization to the Code of Conduct (tracking, security, consent authorizations)
 - Large number of End Users relative to Manufacturers requires Manufacturers to request a vast number of government to government consent authorizations which places a significant burden on both the Manufacturer and Regulatory Agency
 - -Government to Government consent authorizations issued for short durations which may not support the time needed to develop a transportation and delivery plan
- Perceptions of risk to safety and security in the supply and use of radioactive sources
 - public and media concerns about "dirty bombs" and radiological dispersion devices

Challenges to the Continued Beneficial Use of Radioactive Sources

- Denial of shipments due to Supply chain restrictions
 - lack of awareness regarding the safety, security and benefits associated with use of radioactive materials
 - reluctance to handle radioactive materials by the transportation sector as a result of increased cost and effort needed to ensure compliance
- Unclear or conflicting regulatory requirements that may classify radioactive sources as radioactive waste could complicate or prevent the international transfer of radioactive sources back to a source manufacturer for end of life management
- Availability of suitable repositories/infrastructure to ensure safe and secure disposal or long term storage of sources that have reached the end of their useful life and can not be recycled

Challenges – Supply Chain Restrictions

- Limited number of Ports willing or authorized to handle Class 7 materials
- Limited number of carriers willing or authorized to handle Class 7 materials
- ➤ Limited number of Type B packages and no Type C packages dictates transportation schedules, mode, drives up costs for new and replacement sources and makes it difficult to recover orphaned sources
- Most direct routes may be bypassed to minimize transportation costs by reducing transportation user fees or escort fees
- Delay or denial of shipments increases the cost to industry and the consumer, reduces inventories of sterile products and increase the perception of risk associated with use of radioactive sources
- ➤ Package tracking technologies under consideration would increase costs and may reduce number of transportation routes and ports even further

A Record of Safety and Security

IAEA, 2003

"Over several decades of transport, there has never been an in-transit accident with serious human health, economic or environmental consequences attributable to the radioactive nature of the goods."

 – IAEA International Conference on the Safety of Transport of Radioactive Material, 2003

Challenges - Long Term Management of Disused Sources

- Increased demand for disposal as sources approach the end of their working life and few national governments have a repository/disposal infrastructure in place
- ➤ Lack of licensed Transport Packages leads to long-term storage in lieu of proper disposal
- Security and safety risks associated with long term storage warrants investment in consolidation facilities (near term) and repositories (long term), yet funding at this time is difficult to obtain
- Regulatory constraints and high cost of repackaging and shipping sources with expired regulatory documentation (Special Form, Type B etc) would be alleviated by procedures authorizing "special arrangements" to ease/encourage return shipments of disused sources or sources at the end of useful life

A Source Life Cycle Management Model

A strategic approach to a Safety and Security Culture for Sources and Equipment

- ➤ Life cycle source management is a cornerstone to strengthen the long term control of radioactive sources
 - manufacturers endorse the concept of cradle-to-grave source management
 - lack of State repository/disposal infrastructure and regulatory
 inconsistencies create undue burdens and disincentives for Manufacturers
- ➤ An integrated, system concept to source/equipment security is necessary for effective management of disused sources and to mitigate event consequences
 - manufacturers increasingly design-in safety, security and recyclability into systems.
 - recycling where this is technically and commercially viable

A strategic approach to a Safety and Security Culture for Sources and Equipment

- ➤ A risk-informed (graded) approach is fundamental to ensuring the effective security of sources and devices
 - based on risk, benefit, cost-effectiveness and practicability
 - ISSPA supports the concept of physical tracking of category 1 packages and administrative tracking of category 2 packages, but sources themselves cannot be tracked
- Regulators, manufacturers, suppliers and users all have specific, but complementary and overlapping roles and responsibilities
 - ⇒ a means to ensure effective collaboration between all stakeholders is necessary to promulgate effective strategies

Engagement of industry: a key success factor to Enhance a Safety and Security Culture

- ➤ To actively participate in developing strategies for the long term control and management of sources
- > To collaborate with the IAEA in developing international policy matters
- To forge a strong partnership with national legislators and regulators
- To develop comprehensive standards that facilitate global commerce
- To facilitate communication, education, and awareness amongst key stakeholders

⇒ as an industry, we take seriously our responsibility to ensure effective stewardship and self-management of our industry

Recommendations

- > Strive to achieve worldwide implementation and harmonization of regulations
 - development of standards must continue
- Continue to foster co-operation between manufacturers and regulators
 - implementation of changes to facilitate the authorization and licensing process
- Establish a culture that applies a risk informed approach to safety and security
 - will help to ensure that cost-effective strategies are being employed
- Take a strategic approach to source safety, security and life cycle management
 - fundamental to strengthen long term control of sources

Conclusion

- Radioactive sources can and will provide a safe, secure, viable technology for medical, industrial and research applications for decades to come
- ➤ Regulators, Suppliers/Manufacturers and Users have overlapping and distinct responsibilities in regards to safety and security throughout the entire source life cycle
- Disposal options for disused radioactive sources must be commercially and readily available
- A robust safety and security culture is a societal benefit
 - this will ensure the continued beneficial application of radioactive sources and equipment

M

ISSPA Members:

- Berthold Technologies GMBH & Co. KG
- Dioxitek CNEA
- Eckert & Ziegler nuclitech GmbH
- Elekta Instrument AB
- Endress + Hauser GmbH + Co. KG
- Federal State Unitary Enterprise "Mayak"
- Gamma-Service Recycling GmbH
- Best Theratronics Ltd

- General Electric (Energy & Healthcare)
- Institute of Isotopes, Co. Ltd.
- International Isotopes Inc.
- MDS Nordion
- QSA Global Inc
- Reviss Services UK Ltd.
- Varian Brachytherapy

www.isspa.com

⇒ industry leaders ensuring the safe and secure design, manufacture, supply and return of radioactive sources and equipment

