Global Nuclear Fuel

Verification of LS-DYNA Finite Element Impact Analysis by Comparison to Test Data and Classic First Principle Calculations

Andy Langston and Victor Smith

PATRAM 2010 3-8 October, 2010, London, England, UK

Introduction

Development:

• RAJ-II BWR fresh fuel transport package developed in Japan as replacement for first generation design.

• Drop tested in Japan for METI certification.

 Drop tested in USA at Oak Ridge, TN facility for NRC SAR.

 Drop tested in France by Japanese to validate loose rod container.

Licensing History:

- Licensed in Japan in the mid 1990's.
- Licensed in USA in 2005 as replacement for GNF and AREVA first generation packages.
- 2007 Present, GNF and Westinghouse licensing package in EU. During the licensing review additional information requested concerning the impact performance of the package with respect to IAEA TS-R-1.

Solid Model:

 Solid model developed in AutoDesk Inventor.

 Model developed from fabrication drawings.

 Crushable materials modeled as solid objects.

 Sheet metal modeled as Surfaces.

• Soli • Mo

Package

Assembly

FEA Model:

 Solid model imported into ANSYS Workbench.

 Model meshed with Workbench meshing tools.

 LS-DYNA keyword file created In ANSYS Mechanical.

 Crushable materials modeled with solid elements.

 Sheet metal modeled with shell elements.

 Total of 534853 nodes and 442331 elements

Material Properties:

- Honeycomb and Ethafoam properties obtained through laboratory testing.
- Three temperature ranges test including –40°C, 21°C, and 77°C that represents cold, ambient, and hot conditions.
- LS-DYNA material types*MAT_HONEYCOMB and*MAT_CRUSHABLE_FOAM

Honeycomb Engineering Stress-Strain Properties

True Stress Versus
True Strain for 304 SS

Ethafoam Engineering Stress-Strain Properties.

Benchmark with Test Results:

- LS-DYNA honeycomb material property defines an instantaneous modulus of elasticity that accounts for the column buckling of the honeycomb cell.
- The instantaneous modulus of elasticity was adjusted until the initial peak acceleration matched the French top drop test results.
- The French drop test represents the best recorded data for any of the RAJ-II test programs.

Benchmark of LS-DYNA with Drop Test Results

Analysis Results

Side Drop:

- Maximum accelerations occur when lightest fuel bundles is coupled with coldest temperature (-40°C).
 Accelerations increase 5%.
- Heaviest fuel bundle coupled with hot conditions results in 9% decrease in accelerations.
- The peak acceleration is 340g at 500 Hz.

Side Drop Accelerations (Cold, Ambient and Hot Conditions)

Analysis Results

Top Drop:

- Like the side drop maximum accelerations occur when lightest fuel bundles is coupled with coldest temperature (-40°C).
- The peak acceleration is 186g at 500 Hz.

Top Drop Accelerations (Cold, Ambient and Hot Conditions)

Analysis Results

Slap-down/Whiplash:

- The analysis results show that the RAJ-II is more efficient during the slap-down event than the flat top drop.
- During slap-down, honeycomb surface area is initially only available at the point impact and gradually increases as the impact progresses.
- Due to the geometry of the packaging, the initial peak acceleration is much higher during the flat top or side events.

Top Drop versus Slap-down Accelerations

Benchmarking

Comparison with Historic Test Results:

 To benchmark the LS-DYNA analysis results, comparison to historic drop test is used.

- The RA-3D package is a first generation design similar to the RAJ-II
- RA-3D drop tests included natural uranium bundles of common designs to perform the regulatory testing.

Comparison of LS-DYNA and RA-3D Test

 Good agreement between the RAJ-II LS-DYNA analysis results and RA-3D test results including the impact duration. The peak acceleration of the RA-3D is higher than that of the RAJ-II because of increased honeycomb surface area during the initial impact.

Benchmarking

Impact Predictions with Classic First Principle Calculations:

 To further benchmark these results, a hand calculation predicts the peak acceleration.

DYNAMICS OF PACKAGE CUSHIONING

by

R. D. Mindlin Bell Telephone Laboratories

July 1945

BELL TELEPHONE SYSTEM TECHNICAL PUBLICATIONS MONOGRAPH B-1369

- Benchmarking possible because of the simple geometry of the RAJ-II and RA-3D honeycomb design.
- Methodology developed by Mindlin established the basis for predicting acceleration of packaged items.

LS-DYNA, RA-3D Test, and Hand Calculations

 Using this methodology able to provide reasonable estimate.

Verification

Independent Verification using Classic First Principle Calculations:

• To further benchmark these results, a hand calculation predicts the peak acceleration.

- Using the Mindlin method, independent verification was performed to predict the initial and secondary impact during slap-down.
- The load was considered to be carried by only the cross section of the honeycomb block supported by the bottom of the container parallel to the acceleration.

LS-DYNA Slap-Down Results Compared to Hand Calculations

 The estimate of the peak acceleration during the initial impact is within 2g of the acceleration predicted by LS-DYNA.
 The hand calculation estimates a lower acceleration for the secondary peak as compared to LS-DYNA. However, the hand calculation values closely corresponds to the values predicted by the computer model.

Conclusions

- This evaluation shows that testing, finite element analysis, and first principle calculations are all good methods for evaluating the performance of a package.
- With all methods, the key to good results is having well defined geometry and materials.
- When all three methods are utilized, it is possible to benchmark analytical models that can be used to further improve packaging design.

