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President’s Message

Preparing for “Off-normal” Situations
By Larry Satkowiak 
INMM President

I look out the window and it is snowing. 

That is a big deal here in Tennessee 

(USA). We hardly ever get any accumu-

lation of snow, so when it does snow, 

it is a minor crisis. Both pedestrians and 

drivers have difficulty coping because it 

is an “off-normal” situation. Leading up 

to our potential snow season there is a 

lot of talk about best practices regarding 

driving and walking safely in snowy con-

ditions in the hope of avoiding an acci-

dent. What does this have to do with the 

INMM and the world of nuclear material 

management? The very reason why the 

Institute was established was to provide 

a forum for the development and prom-

ulgation of best practices all focused on 

nuclear material and its management. 

The Institute (collectively, we are the 

Institute) is a diverse group of nuclear 

material managers—domestic and in-

ternational, policy and technical, govern-

mental, and non-governmental—who de-

velop and disseminate best practices in 

nuclear security, nonproliferation, arms 

control, nuclear packaging and transpor-

tation, international safeguards, material 

accounting and control, and facility op-

erations. Our goal is not only to improve 

the general management of nuclear ma-

terials on a day-to-day basis but also as-

sist in being prepared for “off-normal” 

situations. That too is a big deal—a really 

big deal. The nuclear materials manage-

ment community is entrusted with the 

safe and secure stewardship of some of 

the potentially most dangerous, but at 

the same time, most useful materials in 

the world. It is a responsibility that the 

INMM and its members take very seri-

ously.

INMM/WNTI/PATRAM Archives
In February, INMM announced the 

launch of an archive of PATRAM Pro-

ceedings. An excerpt is below:

The Institute of Nuclear Materials 

Management (INMM) and the World 

Nuclear Transport Institute (WNTI) are 

pleased to announce a close collabora-

tion of our two Institutes that is intended 

to foster best practices and increased 

awareness in the areas of packaging, 

storage, and transportation of nuclear 

materials. The missions of the two In-

stitutes, coupled with their geographical 

reach, make for a strong partnership in 

supporting the safe and secure packag-

ing, storage and transport of nuclear ma-

terials. This is a focus that is becoming 

particularly important in emerging com-

mercial nuclear markets. 

Two near-term goals for INMM and 

WNTI are to co-sponsor transportation 

workshops in identified emerging nucle-

ar markets and to support the continued 

success of the Packaging and Transpor-

tation of Radioactive Materials (PATRAM) 

conference into the future. With respect 

to PATRAM, it gives us great pleasure to 

announce the launching of the PATRAM 

Proceedings website…. 

This announcement, which was 

well-received throughout the nuclear 

community, is culmination of more 

than three years of effort by Ken So-

rensen (Immediate Past President), 

Henry-Jacques Neau (Secretary-General, 

WNTI), and many others to strengthen 

the ongoing relationship with WNTI and 

reinforce the INMM’s role in developing 

best practices in packaging, storage, and 

transportation of nuclear and radiological 

materials worldwide. Congratulations to 

all!

Looking Back
November Executive Committee 

Meeting—In November, the Executive 

Committee (EC) met in Seattle, Wash-

ington (USA). The November meeting’s 

primary focus is developing and approv-

ing the operating budget for the Insti-

tute. The task is to develop a budget that 

reflects the goals and objectives of the 

Institute and its members. Periodically, 

it is worthwhile to do an assessment to 

ensure that we are meeting the needs 

of our members. To that end, the EC 

agreed to engage an outside expert who 

specializes in developing strategies for 

building and sustaining successful pro-

fessional societies. The assessment/

strategic planning effort was kicked off 

in January with the membership survey 

that many of you participated in. During 

the next few months there will be tele-

Mission Statement
The INMM is an international professional society dedicated to development and promulgation 
of practices for the safe, secure and effective stewardship of nuclear materials through the 
advancement of scientific knowledge, technical skills, policy dialogue, and enhancement of 
professional capabilities.
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phone interviews, in-person meetings, 

etc., with a draft product presented at 

the Annual Meeting this summer. Our 

intent is to utilize the results of this pro-

cess to develop a stronger organization 

that meets the needs of our nuclear ma-

terials management community. 

Another highlight of the November 

meeting was that several participants 

met with members of the University of 

Washington Student Chapter and their 

faculty adviser. A lively and enlighten-

ing discussion on world events ensued. 

I was very impressed with their breadth 

and depth of knowledge.

31st Annual Spent Fuel Seminar— 

In January, the 31st Annual Spent Fuel 

Seminar was held at the Washington 

Marriott Georgetown in Washington, 

D.C. (USA). Congratulations to Jeff Eng-

land, the INMM Packaging, Transporta-

tion, and Disposition Technical Division, 

for putting together another outstanding 

agenda. An international group of more 

than 130 participants from government, 

industry, trade organizations, academia 

and professional societies presented pa-

pers, shared ideas and exchanged best 

practices. The proceedings can be found 

on the INMM website.

8th INMM/ESARDA Joint Work-

shop—In October, the Institute of Nu-

clear Materials Management (INMM) 

and the European Safeguards Research 

and Development Association (ESARDA) 

held their eighth joint workshop at Jack-

son Lake Lodge, Wyoming (USA). The 

overall theme was building international 

capacity. The workshop comprised a 

day and a half of intense working group 

meetings in four parallel sessions sand-

wiched between an opening plenary ses-

sion filled with challenges and a closing 

plenary summarizing the outcomes. The 

topics were nonproliferation and nuclear 

security, arms control, international safe-

guards, and training. Under these topics, 

in the parallel sessions, each half-day 

was devoted to a different theme, with 

discussion preceded by brief position pa-

pers. Many of the papers and all of the 

working group summaries can be found 

on the INMM website.

Looking Forward
In early March, the Technical Program 

Committee met to review all the ab-

stracts submitted, sort them into ses-

sions, and develop the technical program 

for the 57th INMM Annual Meeting, 

which will be held July 24-28, 2016, at 

the Atlanta Marriott Marquis in Atlanta, 

Georgia (USA). It looks like we will have 

another strong program this year.

The Institute of Nuclear Materi-

als Management, U.S. Naval Academy, 

American Nuclear Society and the U.S. 

Naval Academy American Nuclear Soci-

ety Student Chapter, in association with 

the National Cybersecurity Institute, are 

pleased to announce a Technical Meeting 

on Nuclear Energy and Cyber Security to 

be held at the U.S. Naval Academy and 

the Annapolis Waterfront Hotel on April 

17-19, 2016, in Annapolis, MD (USA) 

to recognize the first USNA graduating 

class of Nuclear Engineering and Cyber 

Security majors.

The Texas A&M Student Chapter 

in conjunction with the International 

Safeguards Technical Division and the 

Southwest Regional Chapter, is holding 

a Safeguards Culture Workshop, April 

26-27, 2016, at Texas A&M University, 

College Station, Texas (USA). The intent 

of this workshop is to gather experts in 

safeguards and other related fields to ex-

plore and define what is meant by “safe-

guards culture,” to assess the degree to 

which safeguards can be incorporated 

into the culture of an organization, and 

to identify research areas that need ad-

ditional focus.

The 18th International Symposium 

on the Packing and Transportation of 

Radioactive Materials (PATRAM) will be 

held on September 18-23, 2016, at the 

Kobe Portopia Hotel in Kobe, Japan. 

PATRAM brings together experts from 

governments, industries and research 

organizations worldwide to exchange 

information on all aspects of packaging 

and transport of radioactive materials 

around the globe.

Finally
It has stopped snowing. However, just 

like in the nuclear materials manage-

ment world, the need for vigilance and 

constant preparation never ends.

INMM President Larry Satkowiak 

can be reached at satkowiaklj@ornl.gov.
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As I write this column I remember the 

conversation I had with Dennis Mangan, 

the long-time Technical Editor of the 

Journal, several years ago. Dennis had 

just lost his assistant technical editor and 

was looking for a suitable victim (er… 

replacement) to help with the Journal. 

The position intrigued me and I agreed 

to help out. It has been fun, a challenge, 

and an education to learn how a profes-

sional journal like the JNMM is compiled 

for every issue. There is a very large 

supporting cast of Technical Division 

Chairs, Associate Editors, and reviewers 

without whom the Journal could not be 

done. The Journal is so much more than 

just the Managing Editor, the Technical 

Editor and the Assistant Technical Editor. 

As I write this column on behalf of Den-

nis, who is unable to do it at this time, I 

hope to be able to do justice to the hard 

work that goes into putting together ev-

ery issue of the Journal and particularly 

this special issue on IAEA safeguards.

As noted in the introductory re-

marks by Tero Varjoranta, the current 

Deputy Director General and Head of 

the Department of Safeguards Interna-

tional Atomic Energy Agency, the IAEA 

continues to make a vital contribution to 

the international peace and security and 

to the peaceful use of nuclear materials 

and related technology. It is quite fitting 

that the JNMM publish a special issue 

on the IAEA and the many facets of its 

work from implementation to techno-

logical challenges to training the current 

and next generation of safeguards prac-

titioners. I encourage you to read the 

many interesting articles that are con-

tained in this special issue. I would also 

like to extend my special thanks to Carrie 

Mathews who initiated and coordinated 

the efforts by the INMM Vienna Region-

al Chapter and the INMM International 

Safeguards Technical Division to com-

pile this special issue. I would also like 

to thank the authors who took time from 

their undoubtedly busy schedules to 

write the articles in this volume and the 

volunteers who contributed their time to 

peer review the material and offer sug-

gestions for improving the content.

Besides reading the papers on the 

IAEA safeguards, please check out the 

book review by Mark Maiello and the 

column by Jack Jekowski, chair of the 

INMM Strategic Planning Committee 

and editor of Taking the Long View. Both 

columns speak to topics that could have 

been taken from the news yesterday 

despite the fact that they were written 

weeks ago. 

JNMM Interim Technical Editor 

Markku Koskelo can be reached at mko-

skelo@aquuilagroup.com.

The Continued Relevancy of IAEA Safeguards
By Markko Koskelo 
JNMM  Assistant Technical Editor
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Introduction to JNMM Issue on IAEA Safeguards

Tero Varjoranta  
Deputy Director General and Head of the Department of Safeguards 
International Atomic Energy Agency, Vienna, Austria

International Atomic Energy Agency 

(IAEA) safeguards make a vital contribu-

tion to international peace and security. 

They allow the IAEA to provide credible 

assurances to the international commu-

nity that states are honoring their obliga-

tions to use nuclear material and tech-

nology only for peaceful purposes. 

Preserving the effectiveness of 

IAEA safeguards during this time of ris-

ing demand and static budget is para-

mount. We are therefore working hard 

to improve its productivity: striving for 

greater efficiency without compromising 

the credibility of our work. 

We see three main ways of doing 

so:  firstly, by doing things more smartly 

and efficiently in-house and in the field; 

secondly, by making better use of mod-

ern technology; and thirdly, by states 

improving their own performance in the 

implementation of IAEA safeguards. 

In the implementation of safe-

guards, a good working relationship 

between the IAEA and the national or 

regional authorities responsible for safe-

guards implementation is critical. The 

Department of Safeguards is making a 

conscious effort to foster and sustain 

cooperative partnerships with these au-

thorities. Real progress is being made, 

but there is further to go. 

My vision for safeguards is one in 

which states, including safeguards au-

thorities, and the nuclear industry see 

us as value added — important partners. 

This is of great importance for the IAEA to 

continue to draw independent and cred-

ible safeguards conclusions and firmly ad-

dress issues of safeguards concern.

In its efforts, the Department of 

Safeguards fully recognizes the impor-

tance of effective communication with 

the international safeguards community. 

This issue of the Journal of Nuclear Ma-

terial Management (JNMM), organized 

by the Vienna Chapter of INMM, contrib-

utes significantly in this regard. 

I greatly appreciate the authors’ 

commitment to this initiative, as well 

as the dedicated support received from 

the peer reviewers and the INMM edi-

torial staff. I would also like to express 

my support for the important role of 

INMM in providing a forum for exchange 

of ideas and information related to IAEA 

Safeguards.
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This issue of the Journal has been or-

ganized through a partnership between 

the INMM Vienna Regional Chapter and 

INMM International Safeguards Techni-

cal Division. The papers cover a range 

of topics, describing contemporary safe-

guards implementation challenges and 

initiatives, and touching upon on-going 

continuous improvement efforts of the 

Department of Safeguards of the IAEA. 

The papers written by IAEA staff have 

been approved for external publication 

by the IAEA, but reflect the views of 

the named authors and not necessarily 

those of the IAEA. Finally, the Vienna 

Chapter would like to thank the volun-

teers who contributed their time and en-

ergy to peer reviewing the articles con-

tained in this issue of the JNMM.

IAEA safeguards implementation 

requires competent staff, reliable equip-

ment and technology, and good coopera-

tion between the inspectorate and the 

states. Transparency and communica-

tion by the IAEA, such as through pub-

lications like the JNMM, can increase 

awareness among potentially qualified 

individuals, with regard to opportuni-

ties to work at the IAEA. It can also 

improve the understanding of the R&D 

community with regard to the technol-

ogy development priorities of the IAEA. 

Transparency and communication also 

strengthen the cooperative relationship 

between the IAEA and states. 

The Vienna Chapter of INMM has 

been in existence since 1979, with the 

majority of its members being staff of 

the IAEA. The chapter creates opportu-

nities for networking and professional 

development; encourages and facilitates 

publications in the Journal of Nuclear 

Materials Management and proceedings 

of Annual Meetings; organizes expert 

lectures and topical workshops; and ar-

ranges an annual science and engineer-

ing fair for middle and high school stu-

dents from local and nearby international 

schools.

More Information about the Vienna 

Chapter can be found on its website at 

www.inmmvienna.org.

The 2015-2016 Vienna Chapter Executive Committee (left to right): Sebastian Richet (Member-at-
Large); Fabian Rorif (Treasurer); Brian Boyer (Member-at-Large); Carrie Mathews (President); Elisa 
Bonner (Secretary); Tom Jeffrey (Vice President); John Kinney (Immediate Past President).

A Note from the INMM Vienna Regional Chapter 

http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=6&exitLink=http%3A%2F%2Fwww.inmmvienna.org


Topical Papers

7Journal of Nuclear Materials Management 2016 Volume XLIV, No. 2

The IAEA makes a vital contribution to international peace and 

security. Its independent verification work allows the IAEA to 

provide credible assurances that states are honouring their in-

ternational obligations to use nuclear material only for peaceful 

purposes.

Why Do Safeguards Matter?
Nuclear material and technology have the potential to contrib-

ute to health and prosperity. Practically all countries around the 

world use nuclear applications for a variety of peaceful pur-

poses, including food and water security, energy, industry and 

human health. However, nuclear material and technology may 

also be used for the development of nuclear weapons.

The IAEA was established in 1957 to seek to accelerate 

and enlarge the contribution of nuclear energy to peace, health 

and prosperity and ensure that assistance provided by it is not 

used in such a way as to further any military purposes. The 

IAEA pursues the non-proliferation element of its work through 

the implementation of a set of technical measures, or "safe-

guards". These serve as an important confidence building mea-

sure through which a state can demonstrate—and other states 

can be assured—that nuclear material and technology are be-

ing used only for peaceful purposes. IAEA safeguards help to 

ensure that nuclear material and technology are placed only in 

the service of peace and the development of humankind, while 

preventing its diversion and misuse. Without IAEA safeguards, 

there would be far less nuclear cooperation and transfer of 

nuclear technology.

Safeguards Legal Framework
IAEA safeguards are embedded in legally binding agreements. 

Pursuant to the IAEA’s Statute, which authorizes the Agency to 

establish and administer safeguards, states accept IAEA safe-

guards through the conclusion of agreements with the Agency. 

These legal agreements are of three types: 

• Comprehensive safeguards agreements (CSAs) with non-

nuclear-weapon states (NNWSs) parties to the Nuclear 

Nonproliferation Treaty (NPT) and to regional nuclear-

weapon-free zone (NWFZ) treaties; 

• Voluntary offer safeguards agreements (VOAs) with the 

nuclear-weapon states (NWSs) parties to the NPT; and 

• Item-specific safeguards agreements that are currently 

implemented in states that are not a party to the NPT.

The vast majority of safeguards agreements are those that 

have been concluded by the IAEA with NNWSs parties to the 

NPT. Under the NPT, the NNWSs parties have committed not 

to produce or otherwise acquire nuclear weapons, to place all 

of their nuclear material and activities under IAEA safeguards 

and to allow the IAEA to verify their commitments.

Additional Protocols to safeguards agreements enhance 

both the effectiveness and efficiency of safeguards implemen-

tation in states. The additional measures provided for in an Ad-

ditional Protocol to a CSA include provisions for broader infor-

mation about, and inspector access to, all aspects of a state's 

nuclear fuel cycle.

A state with little or no nuclear material may be eligible to 

conclude a small quantities protocol (SQP) to its CSA, which 

reduces the safeguards activities conducted in the state.

Safeguards in Practice
The purpose of IAEA safeguards is to verify states’ legal com-

mitments under their respective safeguards agreements with 

the IAEA. Safeguards implementation during an annual cycle 

comprises four fundamental processes:

1. Collection and evaluation of safeguards relevant informa-

tion. The IAEA collects safeguards relevant information 

about a state and processes and reviews it in order to 

evaluate its consistency with the state’s declarations 

about its nuclear programme and other safeguards rel-

evant information available to IAEA.

2. Development of a safeguards approach for a state, which 

includes the safeguards measures to meet the concrete 

technical objectives for verifying the state’s declarations.

3. Planning, conducting and evaluating safeguards activi-

ties. The IAEA develops a plan specifying the safeguards 

activities to be conducted both in the field and at Head-

quarters. Once an activity has been conducted, the IAEA 

evaluates the extent to which it has attained the technical 

IAEA Safeguards: Delivering Effective Nuclear Verification for  
World Peace
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objective(s) and identifies any inconsistencies necessitat-

ing follow-up activities.

4. The safeguards conclusions drawn by the IAEA, which 

are based on its independent verification and findings, are 

the final product of the annual safeguards implementation 

cycle. The conclusions provide credible assurance to the 

international community that states are abiding by their 

safeguards obligations.

Current Trends
The number of nuclear facilities coming under IAEA safeguards 

continues to grow steadily. So does the amount of nuclear ma-

terial to be safeguarded. 

Over the past five years, the number of nuclear facilities 

under safeguards has risen by 12 percent and the quantity of 

nuclear material under safeguards by some 14 percent. De-

mands are also increasing as more facilities are decommis-

sioned because this generates additional needs to verify nucle-

ar material packaging, movement and disposition. The number 

of states with safeguards agreements and additional protocols 

in force is also rising.

IAEA safeguards will need to keep adapting. Further im-

provements and optimization are necessary to guarantee ef-

fective, reliable and credible safeguards. It is essential that the 

IAEA continue to strive for greater efficiency without compro-

mising effectiveness. With the support of its member states, 

the IAEA will continue to live up to the expectation of the in-

ternational community by verifying the peaceful use of nuclear 

energy, thereby contributing to the non-proliferation of nuclear 

weapons.
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Abstract 
This paper describes recent developments under an initiative 

begun in 2014 to improve the measurement of performance 

by the International Atomic Energy Agency (IAEA) Department 

of Safeguards. The approach taken and progress made over 

the past year to further develop the performance management 

support tool and the more recent work to “pilot test” selected 

performance indicators are described. Ultimately, the perfor-

mance management tool should enable the Department to (a) 

monitor, evaluate, and report on the achievement of its strate-

gic and operational objectives, and (b) improve its performance 

on a continual basis. The performance management tool will 

be aligned with related results-based management processes 

in the Department and the IAEA as a whole, such as strategic 

planning, programming, and budgeting and reporting, and will 

be integrated with existing and planned management systems. 

(This paper provides an update to a paper delivered by Van Zyl 

de Villiers at the 2014 IAEA Symposium on International Safe-

guards, which described the early activities and plans of the 

Departmental working group that was established for this ini-

tiative.)

Background
The International Atomic Energy Agency (IAEA) has been 

implementing results-based management since 2000. This in-

cludes strategic planning, risk management, biennial planning, 

and periodic reporting of progress and achievements through 

performance indicators on the implementation of the program 

and budget. However, in recent years it has become evident 

that the Department of Safeguards should improve its ability 

to monitor its performance and report on this to stakeholders 

such as the IAEA Board of Governors and member states.  The 

existing mechanisms have been regarded as insufficient, espe-

cially given the challenge of a growing number of facilities and 

increasing quantities of nuclear material under safeguards and 

resources that remain largely at the same level. This means 

that increasing attention must be paid to ensuring that a high 

level of effectiveness can be sustained and that resources are 

used in an ever more efficient manner. Even though perfor-

mance data is periodically collected and provided to external 

stakeholders through the IAEA’s established program and bud-

get reporting processes, the Department’s management team 

requires such information more frequently and sometimes with 

a differentiated focus to support decision making, prioritization, 

and to bring early attention to potential emerging implemen-

tation challenges. The need for such real time management 

information is highlighted by the IAEA’s dynamically changing 

operating environment.

Methodology
For the reasons stated above, a Departmental initiative began 

in early 2014 to develop a performance management support 

tool for the Department. A representative Performance Indica-

tors Working Group (PIWG) was established with a mandate 

from senior management to develop a flexible instrument for 

enhanced performance management (PM). Requirements for 

such a tool included: (1) ease of use, (2) avoidance of any ad-

ditional burden on line management; (3) facilitation of decision 

making at different organizational levels; and (4) accurately 

reflecting performance at any point in time.

Initially the PIWG focussed on two activities, namely con-

firming the objectives to be achieved by the Department and 

compiling an inventory of indicators already in use. The former 

effort established the basis for setting performance targets and 

for monitoring, evaluating, and reporting actual achievements. 

The latter activity sought to identify existing performance indi-

cators (PIs) that might meet the criteria for use in the perfor-

mance management tool. Results of this analysis showed that 

Recent Developments in Performance Management  
in the IAEA Department of Safeguards

Van Zyl de Villiers, Marguerite Leonardi, Carrie Mathews, Jenni Rissanen, and William Stanley  
Department of Safeguards International Atomic Energy Agency, Vienna, Austria
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most of the PIs in use reflected operational statistics rather 

than performance related information for the Department as a 

whole. Existing indicators were not balanced in terms of linkag-

es to the Department’s objectives, processes followed within 

the Department and organizational levels covered. It was also 

found that the typical time span covered and the frequency 

of measurement of the majority of indicators did not support 

short term decision making. The indicators were also “lagging” 

in nature, i.e., showing data only after the fact, and therefore 

did not support taking preventive action. Indicators used for 

reporting to member states every two years were not neces-

sarily useful for internal management decisions or to serve as 

an early warning system. Thus it was clear that the existing 

indicators would need to be carefully reviewed and additional 

performance indicators would need to be developed to support 

a more comprehensive performance management tool. 

In parallel to this initial stocktaking exercise, current prac-

tices and approaches in the field of PM were investigated. The 

characteristics of good performance indicators were deter-

mined and ways in which such indicators could be developed 

were investigated. Best PM practices were reviewed, with 

specific emphasis on non-profit organizations.1 Consultations 

were conducted with the IAEA Standing Advisory Group on 

Safeguards Implementation (SAGSI) and external performance 

management specialists. As the PIWG’s understanding of PM 

developed and the different levels of objectives and outcomes 

to be achieved were confirmed, alignment with other IAEA and 

Department planning and reporting processes were further re-

viewed. As could be expected, it was confirmed that synergy 

should be pursued between the PM initiative and the IAEA’s re-

sults-based management processes, as specifically embodied 

in the biennial Program and Budget activities and the Agency’s 

Medium Term Strategy.2 In this regard, the Department incor-

porated some preliminary results from the PIWG’s work into 

planning for the 2016-2017 biennium.

Figure 1. Department of Safeguards ‘Performance Map’ developed to identify key areas in which to measure performance
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After reviewing good practices in the field of PM, the 

PIWG selected a model designed for public sector and non-

profit organizations, and involved an external consultant to 

facilitate a two-day workshop in which the PIWG developed 

a departmental “performance map.” A performance map is a 

simplified representation of the linkages between the mission 

of an organization (Why are we here?), the high-level outputs 

or products (What do we deliver?), the activities performed 

(What do we do?), and the resources or “enablers” required 

(What do we need?). The map provides a framework for 

the measurement of departmental performance in all of the 

elements as indicated (see Figure 1).

The starting point in the workshop was therefore the 

mission of the Department of Safeguards and the strategic 

and generic objectives relating to safeguards implementation. 

Activities of the Department were grouped with regard to 

safeguards implementation, collaboration and partnerships 

with states and other external stakeholders, effective 

management processes, and preparing for the future. The 

main components of the required resources were identified 

to be safeguards agreements with member states, human 

resources, infrastructure, and financial resources. The resulting 

map reflects a balanced scorecard approach to holistic 

organizational performance. It is a one-page representation of 

the overall objectives of the Department, the products to be 

delivered, activities to be performed and the resources and 

other enablers required to carry out those activities by the 

Department. 

The consensus approach that was followed by the PIWG 

in the workshop and all activities to follow has played an im-

portant role in the development of a better understanding of 

performance management in the Department. Regular interac-

tions between working group members and divisional manage-

ment teams assisted greatly in obtaining representative inputs 

from internal stakeholders and developing buy-in on the pro-

cess being followed towards the establishment of the envis-

aged PM support tool. Several iterations were required before 

reaching agreement on the language used in the map and its 

accompanying narrative, which explains more fully what is cap-

tured in each of the boxes on the map. Performance Map ele-

ment owners were identified from among the members of the 

PIWG and assigned responsibility for incorporating the results 

of the workshop into an initial set of key performance ques-

tions (KPQs) and associated indicators for each element. These 

efforts are described in the following section.

Key Performance Questions and  
Performance Indicators
KPQs are designed to capture the essence of what needs to 

be known to ensure that the organization is performing well on 

the specific component of the map. Only thereafter can PIs be 

selected that would provide the answer, or parts of the answer, 

to the question. The set of PIs associated with a particular KPQ 

should complement one another so that the most important 

features of the topic are covered. In this manner, the PIs will 

accurately reflect the level of achievement relating to each 

main aspect of the Department’s operations. 

During the workshop, the characteristics of good KPQs 

were described and for each element on the map, the group 

developed up to three KPQs. It was agreed that KPQs should be 

open questions designed to stimulate discussion and force re-

flection by management on the map element being addressed. 

Closed questions (yes or no) do not adequately inform perfor-

mance related management decisions or prioritization. For ex-

ample, taking the map element A1 that deals with cooperation 

between the IAEA and states in safeguards implementation—a 

closed question might be “Is the IAEA cooperating effectively 

with states in safeguards implementation?” A more meaning-

ful open question could be, “To what extent do states and the 

IAEA cooperate in conducting in-field verification activities?” 

or “How satisfied are states with their cooperation with the 

IAEA?”  

Once KPQs were defined for each map element, a set of 

one to three PIs were then identified for each KPQ. Reaching 

agreement among the PIWG members of the final KPQs and 

associated PIs took many iterations. A second workshop was 

held with the consultant to examine the initial KPQs and PIs, 

and to evaluate the PIs against a set of criteria (see Figure 2) 

using an approach recommended in Reference 1. The PIWG 

was subdivided into smaller working groups, with each group 

assigned seven to eight KPQs and associated PIs. The groups 

were purposely composed of staff from differing organizational 

units to encourage challenging and critical questioning of the 

validity of identified KPQs and PIs. They were required to evalu-

ate each KPQ and PI in detail (based on the template in Figure 

3) and to consider the data collection sources and methods. 

Their results were provided to the element owners, i.e. the 

‘experts’ on that particular element, who were responsible to 

review the results with relevant colleagues and produce a final 

evaluation for each PI.  
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This approach very effectively tested and critiqued the PIs, 

and identified those that were suitable for use in a pilot test 

wherein the data would be collected and performance results 

produced and visualized in a dashboard. In order to qualify for 

the pilot test, a PI had to be well-defined, the data collection 

method had to be in place (or could be established relatively 

easily), the likelihood of inducing counter-productive behaviour 

had to be low, and the cost/effort to evaluate the PI had to be 

reasonable. 

Some examples of KPQs and associated PIs are shown 

in Table 1. 

An important aspect of the pilot test was to demonstrate 

the ability of the data collection and analysis methods to pro-

duce meaningful performance information. In cases where 

multiple PIs were tested to answer the same KPQ, it was 

important to determine how the results could be aggregated 

to visualize the status of performance relating to a particular 

element of the map. Dashboards sometimes use traffic light 

analogies, color coding, gauges, dials, or other techniques to 

communicate the performance in an area. These require algo-

rithms, performance targets, thresholds and other metrics to 

be determined, with which to decide how to convey the ag-

gregated performance. During the pilot testing period, different 

approaches to visualization were compared to determine those 

that would best meet Departmental needs.  

Performance Map Element KPQ PI Name PI Definition

A6. Plan and conduct safeguards 
activities at HQ and in the field

To what extent do the activities recorded 
in Annual Implementation Plans (AIPs) 
address the identified technical objectives?

AIP activities meeting technical 
objectives

The number and percentage of states with 
approved state-level approaches for which all 
technical objectives are addressed in AIPs

To what extent were the planned  
activities performed?

AIP completion rate Percentage of planned in-field activities in 
approved AIPs completed; percentage of state 
evaluation documents completed

E4. Financial resources that are 
adequate and predictable

To what extent is funding adequate to 
fulfill our mission?

Funding gap Gap between first regular budget proposal and 
approved budget

To what extent is funding adequate to 
fulfill our mission?

Rate of expenditure Planned expenditure compared to actual 
expenditure 

To what extent is funding predictable? Funding mix Funding mix (regular budget, extra-budget, 
unfunded) in budget proposal compared to mix 
reflected in actual expenditures

Table 1. Examples of KPQs and associated performance indicators for pilot testing

Figure 2. Evaluation template to test performance indicators (based on 
Reference 1)
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Path Forward
During the second half of 2015, a selected number of PIs were 

pilot tested, including the first measurement thereof in order 

to provide experience that could be extended to the rest of the 

PIs that had been proposed. Some of the PIs required inputs 

from member states and a questionnaire was being developed 

for this purpose. 

An important effort underway in the Department that is 

relevant to the performance management initiative was the 

updating of the Departmental long-term strategic plan. The 

original plan, developed in 2010 and covering the period 2012 

to 2023, was being reviewed and updated, taking into account 

the work of the PIWG in the framework of the performance 

map. A close alignment of the process to update the strate-

gic plan with the continued development of the performance 

management system was regarded as essential, to ensure that 

performance management would measure the implementation 

of the strategic objectives articulated in the plan. In turn, the 

PIs developed by the PIWG would help monitor and evaluate 

progress towards the plan’s implementation — and inform the 

Department if the actions identified in the plan are not deliver-

ing as intended, thereby helping to identify the need for adjust-

ments.

Another relevant effort was the MOSAIC project to mod-

ernize the information technology of the Department of Safe-

guards. This project will make safeguards-related data more 

Performance Indicator (PI) Design Template

Why do we need this indicator?

Name and definition Clearly identifiable name and unambiguous definition

Strategic element being assessed Description of the PI and what question this PI will help to answer

Owner of the strategic element Identify the person(s) or function(s) responsible for the strategic element or objective

Key performance question List the KPQ this indicator is helping to answer

Target audience Indicate the target audience for this indicator (DDG/DIR/SH/All)

Decisions supported List the decision(s) this indicator is helping to support

How will the data be collected?

Data collection method Brief description of how the data is collected

Data Source Source of data used 

Formula/Scale/Assessment Identify the formula or scale used (%, Number of items)

Frequency How often is the PI measured?

Who measures/reviews the data? Name the person (role) who collects, updates and reviews this data

Expiry/Review date Identify until when this indicator will be collected or when it will be revised

What are the targets?

Target/Performance thresholds Identify targets, benchmarks, thresholds 

How good is the indicator?

Cost estimate Estimates of the potential costs incurred by introducing/maintaining this indicator

Confidence level Provide an evaluation of how well this indicator is able to measure what is intended (good, fair, poor)

Possible dysfunctions Note down any possible ways that this indicator could lead to adverse behaviour

Who will see the data? How will it be presented?

Audience/Access Who receives the reported information? Who has access to it (confidential)?

Reporting frequency How often is this PI reported?

Reporting format/Channels Identify format for reporting (numerical, tabular, graphical, text) and channel (report/meeting/
online)

Notifications/Workflows Identify any notifications, email alerts and workflows triggered by this indicator

Figure 3. Detailed assessment framework for performance indicators (based on Reference 1)
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accessible, and create opportunities for better use of the data 

for the applications to be developed in support of safeguards 

implementation processes. 

The performance map necessarily reflects activities at the 

Departmental level. Performance should also be measured at 

lower levels, and it is essential that such performance is con-

nected to the Departmental level map. Therefore, as a future 

follow up, the map will be “cascaded” into the divisional or 

section levels of the organization, reflecting the aspects of the 

Department’s work that are performed by that section or divi-

sion. Mechanisms will need to be developed to ensure contin-

ued connectivity between the cascaded maps and the Depart-

mental map. 

Finally, no performance management system can succeed 

without the support and commitment of management at all 

levels and the involvement of all staff members. Throughout 

the work to date, the Department’s senior management com-

mittee had been periodically briefed and their guidance was in-

corporated into the work of the PIWG, including in the final ver-

sion of the map. The PIWG members also kept their respective 

divisions informed and solicited inputs in all stages of the work. 

The work was also presented at suitable Departmental forums 

to inform all staff of the performance management initiative, 

explain the benefits and potential impacts, and encourage their 

involvement and contributions.

Lessons Learned to Date
The process described above was found to be challenging but 

worthwhile in raising the profile of performance management 

and increasing understanding of the underlying principles. It 

also emphasized the importance of alignment between differ-

ent management and reporting processes and of buy-in by all 

stakeholders. 

The pilot confirmed the importance and, in some cases, 

the difficulty of formulating clear, unambiguous definitions for 

performance indicators so that credible measurements can be 

made and performance can be tracked over time. Data sources 

were not available for all selected indicators, especially those 

that were not based on operational statistics but required quali-

tative inputs. The design of a performance dashboard proved to 

be important, but could only be done after sufficient agreement 

had been reached on the selected performance indicators and 

suitable ways in which results could be reflected.

Overall this has been a positive experience for the Depart-

ment of Safeguards and can be expected to make a significant 

contribution to improve performance on a continuous basis.
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Abstract
Currently, the International Atomic Energy Agency (IAEA) De-

partment of Safeguards is facing unprecedented challenges in 

the form of an increasing workload and a rapidly changing ex-

ternal environment while maintaining a relatively static level of 

resources. Under these demanding circumstances, it is impera-

tive that staff in the Department feel motivated to perform their 

best. Contemporary research in organizational behavior shows 

that this can be achieved through nurturing an organizational 

culture where staff feel treated fairly, are recognized for their 

efforts and achievements, and are provided with opportunities 

for improving their skills and expertise that will help in contrib-

uting to their professional growth and career advancement. In 

addition, studies done suggest that staff perform best when 

being directed, guided and mentored by competent, communi-

cative as well as compassionate leaders. To enhance such lead-

ership qualities and establish a sustainable organizational cul-

ture within his Department, several initiatives were launched 

by Tero Varjoranta, the current Deputy Director General of the 

IAEA Department of Safeguards. This paper provides an over-

view of the initiatives that were introduced and implemented 

since October 2013, the results achieved so far, as well as the 

imperatives for the future.

Introduction
The International Atomic Energy Agency (IAEA) was estab-

lished in 1957 to seek to enlarge the contribution of nuclear 

energy to peace, health, and prosperity of humankind. IAEA 

safeguards help to ensure that nuclear material and technology 

are placed only in the service of peace and development of hu-

mankind, while preventing its diversion and misuse to further 

any military purposes. This activity is performed by the IAEA 

Department of Safeguards.

At the end of 2014, the IAEA Department of Safeguards 

employed about 850 people from ninety-five countries. At 

this point in time, more than 193,500 significant quantities 

 

of nuclear material and some 1,300 nuclear facilities and lo-

cations outside facilities (LOFs) were under IAEA safeguards. 

  Figure 1 provides a snapshot of the magnitude of the IAEA 

safeguards activities in 2014.
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Figure 1. IAEA Safeguards in 2014 - Key Facts
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In recent years, funding for the IAEA has not kept pace 

with the growing demand for its services in all areas of work 

including safeguards. There is therefore a need to constantly 

find ways of increasing efficiencies without compromising ef-

fectiveness.

The Department had therefore developed a long-term stra-

tegic plan to address these growing demands for its services. 

However, no strategy can succeed without an understanding of 

the culture within which it is going to be implemented. An or-

ganization’s culture can be a powerful and often invisible force 

that counteracts and resists attempts to change and adapt, no 

matter how sound the strategy may be.

In his seminal work on the subject, Schein1 offered a defi-

nition of organizational culture as: “a pattern of shared basic 

assumptions that the group learned as it solved its problems 

of external adaptation and internal integration, that has worked 

well enough to be considered valid and, therefore, to be taught 

to new members as the correct way to perceive, think, and feel 

in relation to those problems.”

To make organizational culture more visible, Schein de-

vised the “onion model,” which unpacked culture into three 

distinct layers.2 Schein postulated that the outer layers are rela-

tively easy to change and adapt while, in contrast, the inner 

layers are relatively hard to diagnose and adjust. 

The outer-most layer, “Artifacts and symbols,” comprises 

visible things such as:

• Architecture and physical surroundings

• Products and technologies

• Style (dress code - art - publications)

• Published values / mission statements 

• Myths / stories / rituals/ heroes

The middle layer, ”Espoused Values,” comprises the val-

ues championed by the organization’s  leadership while the 

inner-most layer, ”Assumptions,” comprises underlying (and 

often unconscious) determinants of an organization’s attitudes, 

thought processes, and actions.

Alternatively, an organization’s culture can be thought of as 

an iceberg with the visible symbols being a mere fraction of the 

depths and solidity that is invisible to the eye.

When he took charge in 2013, the current Head of the 

Department of Safeguards, Tero Varjoranta, was fully cognizant 

of the importance of nurturing a suitable organizational culture 

in order to achieve the challenging goals ahead. 

Changing organizational culture at the invisible levels is 

significantly challenging. It is relatively more feasible to ad-

dress the here and now or the more visible aspects of culture 

that would also be referred to as “organizational climate.” If 

culture is the personality of the organization, then climate has 

more to do with the mood or prevailing atmosphere within the 

organization. The climate is prone to more short-term fluctua-

tions and is determined by many factors including leadership, 

structure, rewards, and recognition.

With this in mind, several initiatives under the banner 

“Management Matters” were commissioned by Varjoranta to 

diagnose the existing Departmental climate and leadership ca-

pacity, based on which specific interventions were designed 

and implemented to help create a more conducive climate and 

to enhance staff engagement.

Setting the Stage
In creating an atmosphere within the Department that would 

be open to giving and receiving constructive feedback, Varjo-

ranta offered himself as the first leader to undergo an assess-

ment process on his leadership qualities and performance. As 

a result, a brief survey was created and sent to the colleagues 

who worked most closely with him. The results of this survey 

were shared in detail during a staff meeting of the Department. 

This level of openness and sharing was appreciated by the De-

partment and set the stage for subsequent initiatives.

In attempting to understand the various facets of the De-

partment’s climate, there was a need to identify and adopt 

appropriate tools and techniques which had the necessary va-

lidity3 and reliability.4 In some cases, such widely tested tools 

were available while in other cases, specific tools were created 

and tested internally prior to their implementation.

Departmental Culture (Climate)
Diagnosis Phase
Culture is made up of tangible and intangible elements, with 

many of the latter being difficult to measure and track. One of 

the most widely used and well-accepted methods to gather 

information about the tangible aspects of culture (climate) is 

the survey or questionnaire. 

The last staff survey had been carried out in 2004 across 

the IAEA. It therefore appeared to be an opportune time in 

2014 to conduct a survey within the Department of Safeguards 

to gather information on staff perceptions of the various issues 

that affected their engagement, motivation, and morale and to 

compare the changes over the decade.
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Using the 2004 survey questions as a baseline, a series of 

discussions were held with Departmental representatives of 

the IAEA Staff Association5 in order to identify the main issues 

affecting the staff in the recent past. These issues were then 

distilled in the form of twenty-one multiple-choice questions 

covering a spectrum of areas such as feeling of well-being, 

fairness, transparency, professional and career development 

opportunities, health and safety, and so on. In addition, respon-

dents were provided space for comments.

The survey was administered online using a commercially 

available web-based software and staff members were given 

one month to complete it. The survey was completely anony-

mous; however respondents were encouraged to provide 

some demographic information on a purely voluntary basis to 

enable further analysis.

The survey had a response rate of 80 percent with more 

than 175 free-format comments received. The responses and 

comments were analysed at the Departmental level as well as 

at the level of the various individual divisions. Any significant 

differences in the level of response by division or other de-

mographic factors (gender, length of service, type of contract) 

were noted for further analysis or investigation. 

While the overall employee engagement score6 was ex-

tremely positive at 87.9 percent, the responses to several 

questions as well as the comments nevertheless revealed 

some dissatisfaction and concerns on a wide range of areas 

such as career prospects, long-term well-being of staff, and 

certain management practices. Figure 2 provides an illustration 

of some of the topics raised in the comments.

In order to delve deeper into these areas of dissatisfac-

tion, a series of six focus group discussions were held. These 

sessions were facilitated by an external consultant in order to 

create a “safe space” for staff members to share their opinions 

openly. The discussions were held under the Chatham House 

Rule.7 

In preparation for these focus groups, the facilitator im-

mersed himself in the survey results and gathered significant 

qualitative and trend information on the various issues troubling 

staff members through in-depth discussions with Departmen-

tal representatives of the IAEA Staff Association, the IAEA’s 

human resources function, the staff counselor, and the internal 

investigator. 

Almost eighty staff members (approximately 10 percent 

of the Department) from all divisions and levels participated 

enthusiastically in these two-hour long focus group discussions 

on the following questions:

• What are specific examples of Departmental management 

practices that need to be improved?

• What recommendations do you have to improve these 

specific practices?

• What leadership competencies are missing?

Figure 3. Process to identify problem areas and propose solutions

As a result of these intense discussions, the facilitator was 

able to identify and compile suggestions and ideas from staff 

members on several areas using the process illustrated in Fig-

ure 3. However, the extent to which the Department had the 

ability to influence these areas varied widely from little to no 

influence to a high degree of influence.

Figure 2. Illustrative word cloud of survey comment topics
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Those that fell in the former areas were subjects related 

to policies and practices that affect the entire IAEA or in some 

cases, the wider United Nations system. While recognizing 

these limitations, the Department’s management decided to 

focus on those areas where there was the ability to exercise a 

greater degree of influence. Such areas included the strength-

ening of management and leadership capacity, improving ac-

countability, enhancing multi-cultural sensitivity, and so on.

Implementation Phase
A management retreat was held for the Departmental 

senior management (Deputy Director General and his team 

of Directors) to engage more closely with the results of the 

survey and to develop an action plan to address several of the 

areas of concern.

Based on the discussions during the retreat as well as the 

inputs from the focus group discussions, several priority areas 

were identified and a series of actions were planned and imple-

mented in the following areas:

• Enhancing the feeling of well-being amongst staff 

• Prioritization of activities to reduce excessive workload 

• Career development: through internal mobility and reas-

signment

• Health and safety: Developing policies, training, and tools

As mentioned earlier, it is relatively much more feasible 

for leaders to influence organizational climate than culture in 

the form of designing and improving work practices, recog-

nizing and rewarding performance, and handling conflict in a 

constructive manner. With this in mind, the leadership devel-

opment initiative was launched so that persons in leadership 

roles within the Department were provided with an enhanced 

awareness of the necessary skills and tools to bring about posi-

tive changes in the organizational climate of the Department of 

Safeguards.

Leadership Development
A wide-ranging study carried out by McKinsey & Company in 

2012 8 showed that chief executive officers and business unit 

heads across industries firmly believe that leadership drives 

performance. Over 90 percent of those surveyed in this study 

were already planning to increase investment in leadership 

development within their organizations because they saw it as 

the single most important mechanism to enhance organizational 

performance and productivity. The Agency shares this belief, as 

evidenced by its “Leadership Blueprint” advocated by the Direc-

tor General and senior management in guiding the behaviours 

and values of the organization.

While definitions available for the term “leadership” and 

discussions on its difference from “management” abound, the 

Department of Safeguards adopted a definition based on the 

hierarchy and nominated persons in Director and Section Head 

positions as “Leaders.” Figure 4 illustrates one commonly un-

derstood definition of “Leadership.”

Diagnosis Phase
Within the IAEA, a competency model comprising seven com-

petencies had been in use for several years to assess candi-

dates being recruited to leadership positions, i.e., Director and 

Section Head level positions. These competencies are: 

• Analytical and Strategic Thinking

• Communication

• Change Orientation

• Decision-making

• Program and Individual Performance

• Knowledge Management

• Teamwork/Relationships

Each of these competencies had three proficiency levels 

of increasing progression, viz “Specialist,” “Facilitator,” and 

“Leader” levels.

For the purposes of the leadership development exercise, 

the description of the “Leader” level was used.

The assessment was carried out using the Occupational 

Personality Questionnaire (OPQ32),9 a work-styles assessment 

Figure 4. What is leadership?
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for managerial and professional staff that provided objective 

information to enable better selection and development deci-

sions. 

The same competency model and tool were adopted to 

carry out the Leadership Competency Assessment for the 

staff in leadership positions in the IAEA Safeguards Depart-

ment. This was complemented by a structured interview with 

a psychologist for each participant. These were used together 

to assess the proficiency level of the entire leadership group.

The group results were plotted using an innovative tool 

known as “Talent Maps” displaying the comparison between 

the results of all the participants of the competency assess-

ment process.

These visual maps (as shown in Figure 5) are based on an 

algorithm developed at the University of Zürich10 that enables 

visualization of objects based on their similarities. An iterative 

approximation algorithm finds the best solution on how various 

objects can be displayed on a two-dimensional map while giv-

ing a wealth of information about their similarity and the depth 

of certain characteristics. These maps have neither x- nor y- 

axes. The proximity of the objects on the map shows the de-

gree of similarity between them while the depth of the colors 

represents the fit of each object to a certain set of criteria. The 

use of this tool was pioneered in the field of competency as-

sessment with this exercise whereby the results of the par-

ticipants’ assessment against each of the seven competencies 

were mapped. 

Each talent map was able to depict several dimensions 

of information in an easy-to-understand manner by providing 

a visual representation of the relative strength or weakness of 

each participant in comparison to the average on a particular 

competency, the clustering of staff based on the similarity of 

their overall personalities, and finally, the aggregate strengths 

and weaknesses of the group.

In addition to the aggregated group results, each partici-

pant received an individual report detailing his or her assess-

ment against the seven competencies.

Implementation Phase
The first step in this phase required the participants to go 

through a series of development workshops to understand their 

own individual results and to identify those areas where they 

would need further support to enhance their skills and abilities.

Based on this exercise, the main areas of development for 

the group were identified as: communication, decision-making, 

and change-orientation. A custom-designed training program 

was then created keeping in mind the current challenges facing 

the Department at that point in time, i.e., the implementation 

of the complex MOSAIC11 Information Technology system and 

the further development of safeguards implementation at the 

state-level.12 A three-day leadership seminar was conducted on 

a pilot basis for twelve participants using case studies, role-

plays, and other participatory approaches. The seminar was de-

signed to provide a safe space and a judgment-free opportunity 

for participants to experiment with different skills and behav-

iors as a first step towards enhancing their competencies.

The seminar was well-received by participants (see Figure 

6) who found the exercises very useful as it provided them 

with a good balance of theory mixed with ample opportunity 

to practice new skills. They also appreciated the principles and 

approaches in communication and negotiation provided by the 

trainers. Several participants found the tips on public speaking 

and making presentations very useful and immediately appli-

cable. The examples of managing conflict and mediating claims 

were also found to be extremely relevant to their daily work. 

Some of the key learning of the program included: (i) be 

simple, straightforward, convincing, and always respectful in 

your communication; and (ii) dealing with people is difficult: 

stay open and sensitive to people and their cultural background 

while furthering the organization’s objectives. 

Although the training was highly appreciated by the par-

ticipants, there remained the risk that the lessons learned from 

the experimental situations of the seminar would lapse once 

Figure 5. Illustrative talent map for one competency
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Figure 7. GROW Model of Coaching

they got back to the demands of their work place. One concern 

was that the participants could slip back into their professional 

“comfort zones.” In order, therefore, to maximize the benefits 

gained during the training and to set up a mechanism by which 

participants would continue to be challenged in their assump-

tions and their routine behaviours, an executive coaching pro-

gram was instituted. 

Executive Coaching
Executive coaching is a technique for enhancing a leader’s 

skills through targeted support to address some specific chal-

lenge being faced by the individual. As this is based on the ap-

plication of knowledge and practising new skills, it is expected 

that such experiential learning creates a deeper understanding 

than one that is based on teaching. 

Leaders at a higher level in an organization are expected 

to manage themselves without too much support or oversight 

from their managers. They frequently have to make difficult 

decisions within a limited timeframe using available informa-

tion. These situations can feel quite lonely and stressful for the 

individual. To manage such situations, it is useful to get an ex-

ternal coach. Sportspersons, corporate leaders, and politicians 

increasingly have coaches today. It is no longer perceived as a 

sign of trouble if a top executive signs up for coaching. Rather, 

it is viewed as a necessity.

The increase in the use of coaching for leaders in private 

industry as well as the public sector can be attributed to the 

greater demands of managing global, more diverse teams in 

uncertain environments that are also more technologically chal-

lenging. This is exactly the scenario that leaders in the Depart-

ment of Safeguards find themselves in. Leaders today are ex-

pected to quickly deliver results while managing complex tasks 

handled by staff members of varied backgrounds and talents 

from all across the world.

Coaching therefore, is not a single event; rather it is a se-

ries of interactions focused towards improving a particular skill 

or set of skills.

The first executive coaching cohort within the Department 

of Safeguards consisted of twelve participants, all at director 

or section head level. The executive coach, a qualified and ex-

tremely experienced professional, used the GROW model of 

coaching (see Figure 7), which stands for:

 G: Setting a GOAL for the coaching;

 R: Assessing the Reality of the situation;

 O:  Examining the Options, alternatives or new courses of 

action; and

 W:  Determining a Way forward in terms of actions to be 

taken.

Most participants of the executive coaching initiative re-

ported extremely positive experiences and learning opportu-

nities. They wholeheartedly recommended this approach to 

other colleagues who are committed to making changes and 

are receptive to frank discussions and feedback.

Figure 6. Feedback from Leadership Seminar
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Looking Ahead
While it is still early to determine the impact of these initia-

tives on the overall productivity and morale of the Depart-

ment, some positive results have nonetheless been achieved. 

Foremost, the management initiatives have raised awareness 

amongst both staff as well as those in leadership positions of 

the importance of the tangible as well as intangible aspects 

of culture along with how these aspects should be actively 

managed. This is essential in order to create an enabling work 

environment which is conducive to meeting the challenges 

ahead in an efficient and effective manner. Across the Depart-

ment, “Management Matters” has become a mantra; at every 

quarterly Departmental meeting, there is a concerted effort to 

update staff members on the status of the various relevant ini-

tiatives thus continuously building greater awareness and ac-

countability.

In addition, these initiatives and their results have been 

noted and appreciated by several of the IAEA’s member states 

who have contributed both financially as well as through exper-

tise toward their continuation and future evolution.

So far, most of the initiatives have been aimed at improving 

the leadership skills and competency at the individual level. Go-

ing forward, complementary initiatives addressing team perfor-

mance at all levels of the Department will be undertaken. Such 

initiatives could take the form of team coaching that provides 

a structured context to both support and challenge a group to 

grow and increase its collective performance over time. It is a 

process that can lead to sustainable change and performance 

improvement at the group level in much the same way that 

one-to-one coaching influences such professional growth at 

the individual level. 

Leadership development and culture change activities are 

not a one-off exercise. Rather they need to continuously adapt 

and evolve, anticipating and responding to the challenges faced 

by the organization. There is also a need to identify means 

for objectively assessing the impact of the various initiatives 

planned and implemented over time.

There is hope and expectation that continued internal ef-

forts as well as support and continued extra-budgetary contri-

butions from IAEA member states will allow for such initiatives 

to be sustained in the foreseeable future thereby contributing 

directly to the achievement of the challenging objectives and 

overall mission of the Department of Safeguards.
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Introduction
The International Atomic Energy Agency (IAEA) Department of 

Safeguards cooperates with state and regional authorities re-

sponsible for safeguards implementation (SRAs) to implement 

safeguards. (While the acronym SRA applies to both state and 

regional authorities responsible for safeguards implementa-

tion, most of the cases reviewed in this paper apply to state 

authorities. The more generic term will still be used, however, 

unless the reference is to a state-specific issue.) Such coop-

eration is an obligation of the IAEA and the state pursuant to 

a comprehensive safeguards agreement (CSA). Cooperation is 

important in all aspects of carrying out safeguards, e.g., reporting 

nuclear material inventories, conducting verification activities in 

the field, responding to requests and notifications, and consulting 

on modifications to a safeguards approach. Concluding an ad-

ditional protocol extends such cooperation to other activities, 

such as preparing and submitting declarations, and facilitating 

complementary access. 

In addition to cooperation in safeguards implementation, 

the Department engages with states through training, advisory 

missions, outreach on the conclusion of safeguards agree-

ments and protocols, and ongoing exchanges on technical 

safeguards developments. 

This paper describes some of the challenges states face 

in implementing safeguards, and then reviews the broader 

aspects of engagement between the IAEA and SRAs, with a 

particular focus on the bilateral capacity building and coopera-

tion efforts undertaken by the Divisions of Operations in the 

Department of Safeguards. 

Common Challenges Facing State and 
Regional Authorities (SRAs)
The performance of state and regional authorities (SRAs) and 

the effectiveness of SSACs have a significant impact upon the 

effectiveness and efficiency of safeguards implementation. In 

2014, in some states, SSACs had yet to be established, while 

in other states the IAEA had difficulty identifying a point of 

contact with whom to communicate on safeguards matters. 

Moreover, not all SRAs have the necessary authority, indepen-

dence, resources, or technical capabilities to fully implement 

their obligations pursuant to safeguards agreements and ad-

ditional protocols (AP), where applicable. 

State authorities in some states often have to cope with 

competing regulatory priorities, funding constraints and difficul-

ties with personnel recruiting, retention, and training. A state 

authority may also face challenges in collecting data and navi-

gating the complexities of nuclear material accounting, report-

ing and additional protocol declarations (where applicable). 

The main safeguards implementation difficulties encoun-

tered by the IAEA include: (i) delays in placement of new facili-

ties under safeguards and late provision of design information; 

(ii) delayed feedback on proposed new measures or updated 

safeguards approaches; (iii) inability to use enhanced safeguards 

measures such as remote monitoring; (iv) delays in the submis-

sion of accountancy reports and AP declarations; (v) insufficient 

oversight by state authorities of nuclear material accounting 

and control systems at nuclear facilities and LOFs to ensure the 

required accuracy and precision of the data transmitted to the 

IAEA; and (vi) limiting the number of designated inspectors and 

not providing multiple entry visas valid for at least a year.

Particularly challenging for state authorities is the collec-

tion of information on nuclear fuel cycle related research and 

development not involving nuclear material (AP articles 2.a.(i) 

and 2.b.(i)). Obtaining this information often requires the state 

authority to liaise with a wide range of governmental and com-

mercial organizations, which is a very different undertaking than 

nuclear material accountancy and the conduct of inspections. 

Finally, each SRA has to manage the interactions and in-

terests of operators, companies, research institutes, and gov-

ernment agencies, and coordinate the interface with the IAEA. 

This requires experience, knowledge of safeguards and man-

agement competence to be sustained over time. 

Engagement between the IAEA Operations Divisions and State  
Authorities on Safeguards Implementation

John Lepingwell, Teshome Bayou Temesgen, and Jose Araujo 
IAEA Department of Safeguards, Division of Operations A, B, and C respectively
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As noted in Kinney 2015, experience has shown that many 

states that have concluded a small quantities protocol (SQP) 

to their CSA (hereafter referred to as SQP states) also face a 

number of common challenges. Among these are high staff 

turnover in the state authority; lack of familiarity with safe-

guards or the IAEA (many do not have missions in Vienna); and 

infrequent communications with the IAEA on safeguards mat-

ters. For states adopting a revised SQP or concluding an AP, 

these challenges can significantly affect the ability of the state 

authority to fulfill obligations for reporting and facilitating veri-

fication activities. The state needs the regulatory framework, 

processes, and mechanisms to collect and provide the required 

information to the IAEA, which requires an understanding of 

the obligations.

Establishing the necessary legislative and regulatory 

framework and the organizational capacity to implement it is a 

first step. For states without such a framework and with little 

or no experience with safeguards, it is often difficult to know 

how to start. The IAEA’s Office of Legal Affairs (OLA) works 

closely with states, providing advice and assistance in drafting 

comprehensive nuclear legislation and regulations that address 

not only safeguards, but also safety and security. This is an es-

sential step towards building an effective, independent state 

authority. 

Responsibility for nuclear safeguards may be vested in 

existing state authorities with responsibility for the security 

and safety of radioactive materials or placed in technical or-

ganizations responsible for liaising with the IAEA on technical 

cooperation projects. In states with very limited regulatory in-

frastructures, responsibility may be temporarily placed in a law 

enforcement agency, environmental agency, or in the ministry 

of foreign affairs. An important first step, irrespective of where 

the responsibilities lie, is to initiate communication with the 

IAEA Department of Safeguards.

Just thirty days after the end of the month in which a state 

adopts the revised text SQP, the initial nuclear material inven-

tory report is to be submitted. If the state is well prepared and 

has an effective SSAC, this short timeframe may not pose a 

challenge. In other cases, collecting the information and pre-

paring the initial report may take considerable time, even if 

there is little or no nuclear material to report. 

The SRA first needs to collect the required information, 

process it and submit it to the IAEA. If a state already has a sys-

tem to track radioactive sources, then this may provide much 

of the required information (not because radioactive sources 

are reported as inventory, but because the most common use 

of nuclear material in SQP states is in depleted uranium shield-

ing for radioactive sources). The state then needs to keep track 

of its nuclear material inventory over time, collecting and re-

porting information on an ongoing basis on the movement of 

nuclear material within the state and across its borders. Any 

changes in the inventory are to be reported to the IAEA on an 

annual basis or as the changes occur.

Reflecting these challenges, in 2014, thirteen (out of fifty-

three) states with a revised SQP in force had yet to submit 

an initial nuclear material inventory report. The IAEA has tried 

to facilitate the reporting process by developing simplified nu-

clear material reporting forms as well as by providing training 

and workshops at the national, regional, and global level. Even 

with these steps, however, the process of implementing safe-

guards is a demanding one for many states. The IAEA’s recent 

focus has been on providing training to states in the process of 

revising their SQP or bringing an AP into force, with a special 

emphasis on supporting the establishment of the SRA. 

The AP poses additional, but related, challenges. In many 

cases, a state with an SQP may have very little or nothing to 

declare under its AP. However, the state needs to confirm what 

it does not have, as well as to keep track of what it does have. 

This requires an understanding of the various materials, activi-

ties and equipment specified in the AP and its annexes and a 

system to monitor such activities in the state over time. 

The first comprehensive set of AP declarations has to be 

submitted to the IAEA within 180 days from the date the AP 

enters into force. These declarations must then be updated an-

nually and AP declarations on relevant exports must be submit-

ted on a quarterly basis. For the state to confidently submit a 

complete and correct AP declaration, it requires an adequate 

information collection and evaluation process. Again, train-

ing on the requirements of the AP is highly recommended in 

advance of entry into force. Even so, the state authority may 

have questions for the IAEA during the 180 day period before 

the initial declarations are to be submitted. Such working level 

communication, e.g., by email, between the state authority and 

the IAEA Division of Operations, is very helpful during such 

transition phases.

Engagement between the IAEA and SRAs
To meet the wide range of challenges encountered by states in 

implementing safeguards, the IAEA undertakes a number of ac-

tivities targeted at meeting the specific needs of states. These 
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range from providing advice and assistance in conjunction with 

in-field activities, to training, outreach, technical implementa-

tion meetings, and liaison committees. Some engagement is 

targeted specifically toward states with SQPs. 

General Safeguards Outreach and Training
The IAEA conducts a range of safeguards outreach and train-

ing programs. Most outreach activities focus on encouraging 

states to conclude an AP or to modify an SQP; these are orga-

nized by the Director General’s Office of Coordination (DGOC). 

After a state has decided to take such action, the emphasis 

shifts to training on specific issues regarding safeguards imple-

mentation. 

The Training Section of the Department of Safeguards 

working together with member states and other sections and 

divisions of the Department of Safeguards, as well as DGOC 

and OLA, organizes a variety of training activities for states. In 

some cases this training may be narrowly focused on a specific 

topic (e.g., nuclear material accounting issues in a particular 

state) and in other cases it may involve broad safeguards train-

ing for more than a dozen states. The IAEA has very limited 

regular budget funding for SSAC training so these activities are 

primarily funded through extra-budgetary funding and/or in con-

junction with training activities sponsored by member states. 

In order to make the most efficient use of limited IAEA 

funds and to encourage interaction among safeguards practitio-

ners, training is often conducted on a regional basis. Regional 

training facilitates the exchange of experience between safe-

guards practitioners and formation of peer networks. In some 

cases, these networks are formalized, such as the Asia Pacific 

Safeguards Network (APSN). 

For training to be most effective, whether held regionally 

or in Vienna, the training needs to be directed to the right peo-

ple. Sometimes higher level personnel are nominated to attend 

IAEA training rather than personnel directly involved in imple-

mentation of safeguards. While this is advantageous when the 

state is trying to gain an initial understanding of its safeguards 

responsibilities, the emphasis should eventually shift to train-

ing those personnel directly involved in safeguards implemen-

tation, possibly including facility or locations outside facilities 

(LOF) operators. Once individuals are trained, it is important 

that they be retained. Some states request national training to 

allow several staff to attend. Such trainings are relatively rare 

due to the cost involved, but those that are held are often car-

ried out in conjunction with inspections.

Missions, Visits, and Meetings
The Department of Safeguards holds a variety of meetings 

with SRAs, both in Vienna and in the state; some are high lev-

el, formal meetings and others are working level exchanges. 

Meetings are often held with delegates on the margins of the 

annual IAEA General Conference. Operations Divisions will ar-

range meetings with their counterparts attending IAEA training 

courses, seminars or workshops held in Vienna. Meetings of-

ten take place in conjunction with verification activities carried 

out in the states. 

Safeguards implementation visits are sometimes arranged 

for Operations Divisions to meet with state authorities in states 

with limited nuclear material and activities, where access in-

frequently takes place (e.g., states with original SQPs). During 

such visits, presentations on IAEA safeguards are provided, 

any safeguards issues are discussed (such as modification of 

an SQP, or response to IAEA communication) and action plans 

may be prepared to identify follow-up activities. During the last 

five years (2010 to 2014) the Department of Safeguards carried 

out these visits in more than twenty states. The obligations of a 

state under both a revised SQP and AP were explained, as was 

the obligation to create and maintain an independent and func-

tional SSAC. Hands-on assistance was provided in understand-

ing how to prepare a nuclear material inventory report, collect 

information and prepare AP declarations. In some states, loca-

tions where nuclear material is customarily used (e.g., hospi-

tals, industries, central storages) were visited and equipment 

was identified that contained nuclear material. 

These visits helped the state authorities better understand 

and fulfill their safeguards obligations and to provide the IAEA 

with outstanding declarations and/or initial nuclear inventory re-

ports as applicable. During the visits, the importance of estab-

lishing and maintaining an independent SSAC was reinforced. 

To sustain communication with the IAEA, the importance of 

establishing points of contacts at the different levels based on 

institutions rather than individuals was also highlighted. These 

visits take time and commitment of both the IAEA and the 

states, but in many cases, the outcomes are quite positive. 

Cooperation mechanisms are sometimes formalized in 

states, by setting up committees or working groups. For ex-

ample, the IAEA and EURATOM have organized Liaison Com-

mittees to strengthen their cooperation in safeguards imple-

mentation. The cooperation is put into practice through the 

development of ‘Partnership Approaches,’ which address a va-

riety of practical implementation areas, such as development 
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of equipment and conduct of activities in the field. Joint training 

of staff from both organizations is also addressed, including 

identifying common needs for training, conducting common 

training courses and exchanging relevant technical informa-

tion. The yearly training programs of both organizations are also 

shared. During the last few years, joint trainings were provided 

on Partnership Approaches, teamwork and communication; 

safeguarding specific types of facilities; instruments used dur-

ing inspections; and the complementary access activities.

To help states build their capacity to comply with their 

safeguards obligations, in the last five years (2010 to 2014) the 

IAEA conducted seven IAEA SSAC Advisory Service (ISSAS) 

missions in Kazakhstan, Mexico, Moldova, Tajikistan, Kyrgyz-

stan, the United Arab Emirates, and Uzbekistan. The service 

provides states, at their request, with advice and recommen-

dations on the establishment and strengthening of such state 

systems. The comprehensive nature of the ISSAS limits the 

number of missions that can be conducted in a year, therefore 

less comprehensive but effective engagement with states has 

also been conducted. 

Regional organizations also provide an opportunity not only 

for IAEA engagement with states but also for sharing of safe-

guards experience and knowledge among states. The APSN 

mentioned earlier, for example, has been especially active in 

this regard. In addition to a regular annual meeting of states 

in the Asia Pacific region, the APSN in 2015 hosted its first 

multilateral training workshop in Indonesia with the support of 

the United States. This kind of initiative supports and enhances 

the IAEA’s engagement with states and is a welcome develop-

ment. 

Some states are also taking the initiative to develop re-

gional centers for training in safeguards, security, and safety. 

Japan and the Republic of Korea have both developed safe-

guards training workshops which are conducted jointly with the 

IAEA and with participants from a wide range of states from 

Asia and other regions. The Brazilian-Argentina regional author-

ity, ABACC, also conducts training for its safeguards inspectors 

in coordination with the IAEA on a regular basis. 

The IAEA also reaches out to states and the international 

safeguards community through its symposia and other activi-

ties. In October 2014 the IAEA held its twelfth Symposium on 

International Safeguards in Vienna with the objectives of fos-

tering dialogue, exchanging information and promoting coop-

eration between the Secretariat, member states, the nuclear 

industry and members of the broader safeguards and nuclear 

nonproliferation community. More than 600 participants took 

part in the symposium and more than 300 papers were pre-

sented. 

Finally, the IAEA has been engaging with the member 

states through technical meetings held in Vienna. In recent 

years, these have tended to focus on specific issues such as 

technical background information on reports to the Board, or 

on safeguards implementation at the state level. In 2015, three 

technical meetings on safeguards matters have been held, one 

of which focused on safeguards implementation in states with 

SQPs and the resources and assistance offered by the IAEA 

related to safeguards. 

IAEA Publications and Website
Over the past several years the IAEA has significantly ex-

panded the range of safeguards guidance documents avail-

able for states. In December 2014, an updated version of the 

Guidance for States Implementing Comprehensive Safeguards 

Agreements and Additional Protocols (IAEA Services Series 

21) was published and is now being translated into Spanish 

and Russian. In addition, the first of four guides on safeguards 

implementation practices was published in December 2014 

titled, Safeguards Implementation Practices Guide on Facili-

tating IAEA Verification Activities (IAEA Services Series 30). 

In February 2015, the Safeguards Implementation Practices 

Guide on Establishing and Maintaining State Safeguards Infra-

structure (IAEA Services Series 31) was published. Two more 

Safeguards Implementation Practices (SIP) guides are under 

development for publication in 2016, addressing 1) Providing 

Information to the IAEA; and (2) Collaborative Approaches to 

Safeguards Implementation. 

All safeguards guidance, as well as forms, templates, in-

structions, and information about training and advisory services 

are available to states at the assistance for states (www.iaea.

org/safeguards) web page. This site is continuously improved 

and expanded to ensure the most current guidance and tools are 

available to states. The safeguards-by-design series of guidance 

is available at this site, as well as references such as the Interna-

tional Target Values and the safeguards glossary. When the next 

version of Protocol Reporter software is released, it will also be 

available on the “software and tools” tab on this page.

Targeted Engagement with SQP states
Some training courses are organized specifically for represen-

tatives from states with SQPs. Although the IAEA’s training 

http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=25&exitLink=http%3A%2F%2Fwww.iaea.org%2Fsafeguards
http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=25&exitLink=http%3A%2F%2Fwww.iaea.org%2Fsafeguards
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resources are very limited, some member states have provid-

ed substantial training and assistance targeted at states with 

SQPs, through bilateral training programs. The IAEA focuses 

its efforts on SQP-specific international and regional training 

courses and training for SQP states that are preparing to adopt 

the revised text of the SQP or to bring an AP into force.

For example, the IAEA organized an international SSAC 

course for states with SQPs in the United States in Novem-

ber 2014. The course brought together more than twenty-five 

participants from SQP states around the world and provided 

intensive training on both the revised SQP and the AP. A par-

ticularly important aspect of the workshop was the opportunity 

for representatives of different state authorities to exchange 

their experience and knowledge. The workshop was funded by 

the U.S. Department of Energy and presentations were made 

by experts from the IAEA as well as the U.S. International 

Nuclear Safeguards and Engagement Program (INSEP). Many 

other states, such as Japan, Republic of Korea, and Finland, 

host training courses in cooperation with the IAEA. 

Over the last five years, the IAEA has organized several 

outreach programs and held consultations with member states 

encouraging them to conclude APs and to amend their SQPs. 

In the Asia-Pacific region alone, outreach events were held in 

Singapore (2011) for the Southeast and South Asian states; in 

Fiji (2012) for the Pacific region. In addition, targeted assistance 

was provided to a number of individual states, including Brunei 

Darussalam (June 2014); Laos (August 2013); and Myanmar 

(August 2013, December 2014). Consultations on the conclu-

sion of safeguards agreements and additional protocols are 

held each year with representatives from various states in 

Geneva, New York, and Vienna.

To assist SQP states in building capacity for implement-

ing their safeguards obligations, the IAEA published the Safe-

guards Implementation Guide for States with Small Quantities 

Protocols (IAEA Services Series 22) in English in 2013, and in 

2014, published it in French and Spanish and sent copies to all 

states with SQPs.

The IAEA has also developed the AP Protocol Reporter 

software to help states track and submit AP declarations, and 

it is provided to member states free of charge. However, using 

software can be difficult when it is only needed a few times 

per year. A new version of the Protocol Reporter software is 

expected to be deployed in 2016 and it should address many 

of the usability problems that have been reported.

The IAEA continues to encourage states to modify SQPs 

based on the original text, and to bring APs into force. The es-

tablishment of capable, effective state authorities and SSACs 

in SQP states is essential to effective safeguards. 

The Way Forward
Engagement is an ongoing process. It must evolve to meet the 

needs of the states while at the same time making the most 

efficient use of IAEA and state resources. Based on recent 

experience, a number of areas offer possibilities for improved 

engagement to increase the effectiveness and efficiency of 

safeguards. 

The IAEA’s continued development of tools, forms and in-

structional material could simplify the process of nuclear mate-

rial and AP reporting, especially for SQP states. Initiatives such 

as MOSAIC (the IAEA’s modernization of its IT infrastructure) 

project to develop a state Declarations Portal that would allow 

states to upload their nuclear material reports and the new ver-

sion of Protocol Reporter are important developments toward 

this end. 

The IAEA has significantly increased the number of pub-

lished guides and other assistance for states through the 

IAEA’s website. These collections could be expanded over time 

taking into account feedback from member states. A further 

step in this direction could be the production of online tutorials 

on specific reporting and declaration topics for use in training 

in member states. 

The IAEA’s “one-house approach” for coordinating its 

work in safeguards, nuclear security, and safety (among other 

areas) is beneficial to those state authorities that address these 

activities in one office. This is often the case in states with 

limited nuclear activities, where increased awareness of the 

potential synergies in these fields could boost their efficiency 

and strengthen oversight efforts. 

Regional networks that encourage peer-to-peer training 

and sharing of safeguards experience, and training centers 

established in member states are useful mechanisms for en-

gagement. Coordination with the IAEA can help to reduce du-

plication of effort, ensure training materials are up-to-date, and 

facilitate direct IAEA participation in events as appropriate. 

The timing of training has an impact on its effectiveness. 

Training will be important during the period just before and af-

ter a revised text SQP or AP enters into force. States need 

training on the details of nuclear material accounting/reporting 

and AP declarations when undertaking the initial practical steps 

towards implementation. 
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Conclusions
International legal obligations undertaken by states need to be 

incorporated into the national legislative framework and over-

sight mechanisms. Limited resources are a global reality, but a 

modest investment in establishing a capable state safeguards 

authority and a functioning SSAC pays significant dividends. 

The state can have increased confidence in its control over its 

nuclear material inventory and its nuclear activities and trade, 

and a mechanism for effective and sustained cooperation with 

the IAEA in safeguards implementation. Making effective use 

of IAEA training and engagement will produce the best results 

when states clearly identify and assign safeguards responsibili-

ties and consistently train and support the key individuals. 
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Technical Outreach on Nuclear Material Accounting Reporting –  
Examples of Trilateral Engagement Among the IAEA, State, and  
Operator

R. Kaulich,  E. Gyane, C. Norman, and A. Rialhe 
International Atomic Energy Agency, Vienna, Austria

Introduction
IAEA safeguards implementation involves the verification 

of information submitted to the International Atomic Energy 

Agency (IAEA) by states regarding their nuclear material and 

activities. Paragraph 29 of INFCIRC/153 (Corr.) provides for the 

use of nuclear material accountancy as a safeguards measure 

of fundamental importance, with containment and surveillance 

as important complementary measures. 

Nuclear Material Accountancy
Nuclear material accountancy within the framework of IAEA 

safeguards begins with the nuclear material accounting activi-

ties by the facility operator, which accounts for nuclear mate-

rial within material balance areas (MBA); periodically determine 

the quantities of nuclear material present within each MBA 

through the taking of the physical inventory and tracking of any 

transfers into and out of the MBA; and reports any inventory 

changes and inventories to the state (or regional) authority re-

sponsible for safeguards (SRA).

The SRA verifies the operator’s performance and ensures 

that agreed procedures and arrangements are adhered to. 

Based on the information received from the operators, the SRA 

prepares the respective nuclear material accounting (NMA) re-

ports – inventory change reports (ICRs), physical inventory list-

ings (PILs) and material balance reports (MBRs) – for transmis-

sion to the IAEA. It also provides for IAEA inspector access and 

coordinates arrangements as necessary to facilitate the IAEA’s 

verification activities.

The IAEA independently verifies nuclear material account-

ing information in facility records and NMA reports and conducts 

other activities as provided for in the safeguards agreement. The 

IAEA also takes into account the capabilities of the state system 

of accounting for and control of nuclear material (SSAC) and pro-

vides statements to the SRA on the IAEA’s verification activities.

In practice, IAEA inspectors are the primary interface be-

tween the Department of Safeguards and the state authorities 

and facility operators.

Section for Declared Information Analysis
The Section for Declared Information Analysis (ISD) in the Di-

vision of Information Management of the IAEA’s Department 

of Safeguards is the Department’s clearinghouse for all state 

declared information. It thus plays a key role in handling state 

declared information, the information submitted by states un-

der their respective safeguards agreements and voluntary un-

dertakings (INFCIRC/153-type agreements, INFCIRC/66-type 

agreements, Voluntary Offer Agreements, additional protocols, 

Voluntary Reporting Scheme information, and neptunium and 

americium information). 

ISD receives data by encrypted email or physical transfer 

(e.g., by digital media or, in rare cases, on paper). It then pro-

cesses all reports and declarations and carries out quality con-

trol to check the formatting and correctness of the information. 

ISD maintains the data in different databases and assures the 

correctness and reliability of all data in the databases. It evalu-

ates the state declarations and conducts a consistency analy-

sis of the information. It also provides information services (re-

ports, summaries, analyses) to the Divisions of Operations in 

the Department of Safeguards. By evaluating the state reports 

and declarations, ISD contributes to the state evaluation pro-

cess and plays an essential role in the drawing of safeguards 

conclusions.

On an annual basis, the IAEA currently receives some 

960,000 declarations and report entries provided by the states. 

The volume of safeguards-relevant information has continued 

to rise over the past decade and this trend is expected to con-

tinue in the future. To streamline and prioritize the associated 

workflows and processes, new tools and methodologies are 
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being investigated by ISD to improve the quality of the state 

declared information. 

Cooperation between the IAEA and 
States in Safeguards Implementation
The cooperation between the states and the IAEA, as a means 

of enhancing the effectiveness of the SSAC, may be seen as a 

cornerstone for the efficient implementation of safeguards. It 

is in the best interest of all stakeholders that this cooperation is 

as good as possible and improved if needed. Cooperation also 

needs to include operators of facilities and locations outside 

facilities (LOF), since the SRAs are highly dependent on receiv-

ing all facility information in a timely manner and of the highest 

quality.

The SRA is the primary working-level interface between 

the state and the IAEA. Its functions can be many-fold but 

SRAs should facilitate the verification activities of the IAEA, 

ensure a well-functioning SSAC and submit information to the 

IAEA. Some key good practices of SRAs include:

• Training SRA staff and facility and LOF operators to ensure 

awareness of and compliance with reporting obligations;

• Outreach to industrial and research entities to ensure that 

all necessary information is provided to the SRA (e.g., with 

regard to declarations under an additional protocol); and

• Proactively communicating with the IAEA on safeguards 

matters.1

The recently released IAEA publication Safeguards Imple-

mentation Practices Guide on Establishing and Maintaining 

State Safeguards Infrastructure2 was designed especially to 

meet states’ needs is expected to be useful in upcoming out-

reach activities by giving advice and providing practical exam-

ples of states’ experiences with safeguards implementation.

Past experience has shown that training and development 

of safeguards expertise in states is a continuous need, particu-

larly due to turnover of staff at facilities and SRAs, as well as the 

adoption of new technologies and methods. This may be compli-

cated by a lack of training or reference materials on safeguards-

related subjects, insufficient financial or technical resources, in-

complete national legislation, or an aging workforce. All of these 

factors and others may have an impact on cooperation with the 

IAEA. It is therefore in the interest of all stakeholders to address 

such factors as a means of improving cooperation. 

The number of nuclear material and facilities and quanti-

ties of nuclear material under safeguards is rising. In a resource 

constrained environment, the IAEA will therefore have to look 

for ways to improve its efficiency and effectiveness by optimiz-

ing its internal processes, using modern technology in a smart-

er way and improving its cooperation with SRAs in safeguards 

implementation.3

The following areas still leave room for improvement: 

• The timeliness, accuracy, and completeness of state dec-

larations;

• The quality of the operators’ measurement and accounting 

procedures;

• SSACs that are not fully established; and

• SRAs that lack the necessary authority, independence, re-

sources, or technical capabilities to fully implement the re-

quirements of their safeguards agreements and additional 

protocols.

IAEA invests resources to address these areas through 

training SRAs and operators, and providing targeted assistance. 

IAEA Training 
The IAEA provides the following support to states in order to 

improve cooperation, in the area of safeguards and beyond:

• IAEA SSAC Advisory Services (ISSAS) missions;4

• Integrated Nuclear Infrastructure Review (INIR) missions;

• Training courses (regional/interregional/international level);

• E-learning modules (developed in 2014) explaining the 

IAEA Milestone Approach;5

• Technical documents (TECDOCs);6

• Guidance documents (IAEA Services Series 11, 15, 21, 22, 

30 and 31);

• Other outreach (e.g., technical meetings, annual safe-

guards implementation meetings, etc.);

• Safeguards symposia (forum to exchange views between 

the IAEA and SRAs, and members of the broader safe-

guards and nuclear non-proliferation community);

• IAEA conferences (those addressing the safeguards 

needs in connection with building a competent workforce 

in member states).7 

Outreach and training by the IAEA Safeguards Training 

Section play an essential role in ensuring that nuclear profes-

sionals in states are well prepared to carry out functions of the 

SSAC, both at the facility and at the state level.5 They comple-

ment the focused training provided by ISD and the Nuclear Fuel 

Cycle Analysis Section (IFC), both in the Division of Safeguards 

Information Management (SGIM), in cooperation with the Safe-

guards Divisions of Operations (SGOs).
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Training—Experiences Gained
In order to further enhance these supporting activities for 

SRAs, the IAEA has engaged in technical outreach activities fo-

cused on nuclear material accounting for SRAs and operators. 

These outreach activities are mainly performed by SGIM8 in 

cooperation with the country officers9 and other staff from the 

Divisions of Operations responsible for the respective state. In 

some cases, the Safeguards Training Section assists with the 

outreach activities. 

As detailed above, SGIM is not only responsible for receiv-

ing and processing nuclear material accounting reports but it 

handles all state declared information submitted under states’ 

safeguards agreements and voluntary undertakings. For tech-

nical outreach activities, SGIM usually prepares a number of 

suitable practical exercises for workshops based on realistic 

scenarios and using actual NMA data from the respective 

state. Thorough preparation is a prerequisite for this type of 

interactive training, which provides the participants with the 

opportunity to practically apply their theoretical knowledge, ask 

questions and create solutions for real work scenarios.

This training approach is best described by the following 

adjectives:

• accurate

• timely

• problem/solution-targeted

• country-specific

These outreach activities aim at improving the quality of 

NMA reports, thereby decreasing the IAEA’s workload. It is ex-

pected that this type of focused training will further improve 

cooperation and facilitate safeguards implementation by form-

ing informal bridges between the stakeholders, thus creating 

competent partners in case problems arise.

Outreach activities are organized jointly by the IAEA and 

the respective state. While the IAEA is responsible for the 

preparation of the course material, the state provides the train-

ing premises and if possible access to a nuclear facility in the 

state. SGIM is tasked by the Operations Divisions responsible 

for the specific state to prepare the training materials, which 

consist of presentations, practical exercises and supporting 

documents. Participants may be facility operators or SRA staff. 

These courses are specifically tailored to meet the respective 

state’s training needs. The use of real national NMA data dur-

ing the workshops provides the participants with a better un-

derstanding of the issues presented. SGIM first provides an 

overview on the safeguards agreements in place with the re-

spective state and then presents known problem areas in the 

workshop examples. This way the participants get an overview 

of their state’s responsibilities with regard to nuclear material 

accounting and get an opportunity to practice in corresponding 

workshops. 

Usually course participants are provided with the latest 

versions of the Quality Control Verification Software (QCVS) 

and the Protocol Reporter software. The development of the 

QCVS was funded by the United States Support Program and 

the software was developed by the company AWST and the 

IAEA. The software was developed to assist states in the prep-

aration of NMA reports and their transcription into .txt files, 

which is currently the only electronic format acceptable for 

fixed format NMA reports. The Protocol Reporter was devel-

oped by the IAEA to assist states in the creation and prepara-

tion of declarations pursuant to articles 2 and 3 of an additional 

protocol. During the course ISD helps with the installation of 

the software tools and explains their functions and use to the 

respective SRA staff.

In order to decrease manual workload for both the state 

and the IAEA, SRAs are encouraged to send machine-readable 

data to the IAEA. Outreach training provides a perfect oppor-

tunity to give detailed advice on all IT-related matters with re-

spect to the electronic submission of NMA data.

The use of modern technology looks easy at first sight but 

the transition from hard-copy to electronic declarations some-

times presents significant difficulties for the SRAs. 

Experience has shown that the possibility to train SRA 

personnel together with facility or LOF operators opens up a 

discussion forum for both parties on different topics. Facility 

operators usually have a very good knowledge of their respon-

sibilities but also of their rights. As became obvious in some 

of the latest outreach activities, the majority of LOF operators 

were not aware of their reporting responsibilities towards the 

SRAs. From their point of view, the relevant licensing systems 

in place (which often do not include any safeguards-related pro-

visions) were perceived to be sufficient in terms of complying 

with their obligations towards the SRAs.

In the rare cases where no legal system, including provi-

sions related to safeguards, has been established by a state, 

there exists a real problem with respect to safeguards imple-

mentation as NMA reports are either not submitted at all or 

not in a timely manner. SGIM has therefore tried to engage 

operators by educating them on the consequences that this 

lack of information provision poses to their state. In a specific 
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case, SRA personnel were advised to reach out to operators on 

a regular basis in order to receive the necessary information on 

time. Although this can be only an interim solution until official 

legislation is in force, it may be a first step towards the estab-

lishment of a national legal framework.

In one of the most recent outreach activities, the Depart-

ment held workshops that specifically addressed the problems 

encountered in reporting for a specific MBA. Several presenta-

tions were delivered and in a follow-on workshop the participants 

were shown the particular NMA reports previously submitted to 

the IAEA. The problems which had arisen from incorrect, late or 

missing reports were highlighted and solutions for these prob-

lems were worked out together with the participants. 

Experience has shown that when SRA staff have the op-

portunity to personally discuss NMA reports with the IAEA 

staff who work with these types of reports on a daily basis, 

valuable information can be exchanged that very often leads to 

a better understanding and enables reporting to be optimized.

The atmosphere in this kind of outreach is open and col-

legial and provides the framework for creating and strengthen-

ing working level relations among peers at the IAEA and at the 

SRAs and facilities. Working level interactions can facilitate un-

derstanding and comprehension communicating clearly and giv-

ing examples that are easy to understand. The personal contacts 

created through such outreach activities provide a valuable basis 

for increased information exchange and communication when 

problems regarding NMA reports arise. Contacts with operators 

are also helpful, but these interactions are facilitated through the 

SRA, who is the direct counterpart with regard to the submis-

sion of NMA reports. Therefore, it is important to encourage op-

erators to cooperate closely with their SRA. 

Very often, the SRAs do not invite LOF operators to partici-

pate in all of the workshops provided by the IAEA because of 

the confidentiality of NMA data. Therefore, the presentations 

given by the IAEA can only be seen as a first step towards 

proper education of a state’s safeguards workforce. These 

outreach activities could be useful for the LOFs and SRAs can 

play an important role in sharing the materials with them. Some 

common challenges faced by many of the SRAs with regard to 

NMA reporting can negatively influence the flow of informa-

tion, such as:

• Aging workforces (key personnel retiring without 

adequately trained successors);

• No knowledge management processes in place (one 

person show);

• Unclear national and/or legal competencies (no law and/or 

law enforcement); and

• Limited number of staff responsible for safeguards 

implementation (financial restrictions).

It is anticipated that with an enhanced understanding of 

rights and responsibilities of SRA personnel and facility/LOF 

operators, the cooperation related to safeguards in other fields 

will profit as well (e.g., incorporation of safeguards features 

into the design of new facilities).

Conclusion
Over the past few years SGIM, upon request by and in coop-

eration with the Divisions of Operations of the Department of 

Safeguards, has conducted several trilateral outreach activities 

to various countries in order to strengthen the capabilities of 

their SRAs; educate their personnel specifically on NMA report-

ing and AP declarations; provide relevant software; solve out-

standing reporting issues; and assist in the improvement of the 

operators’ accounting and measurement system. 

Since then, a number of countries have successfully 

transitioned from hardcopy to electronic submission of NMA 

reports to the great benefit of the IAEA. With the input from 

relevant SRA staff, SGIM was able to solve many problems 

related to analyzing NMA reports. Advice was given on how to 

reach out to LOF operators in several countries and workshops 

on additional protocol declarations were conducted in states 

with an AP in force. SGIM has not only focused on providing 

knowledge to the SRAs but also on establishing valuable con-

tacts for the future to ensure a smooth and timely submission 

of correct and complete NMA reports.

The practical cooperation between the SRA, the facility 

and LOF operators, and the IAEA is one of the cornerstones to 

successful implementation of IAEA safeguards. The day-to-day 

implementation works best when it is conducted as a coopera-

tive effort among SRAs, operators and the IAEA, with all par-

ties sharing a common understanding and seeking to achieve a 

successful outcome. One way to foster a proactive partnership 

is to approach state authorities that are in need of guidance and 

support them by providing tailored training for the SRAs and 

the operators, thus building informal bridges and increasing the 

support of IAEA implementation activities. These outreach ac-

tivities are targeted to the audience, can be provided in a timely 

manner and create a climate of confidence and cooperation to 

the mutual benefit of states and the IAEA. 
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Abstract
What is a small quantities protocol (SQP)? What is an SQP 

state? Why have safeguards for SQP states come to such 

prominence? The origin of and the reasoning behind SQPs to 

comprehensive safeguards agreements are explored and the 

circumstances that led to the need to modify the model SQP 

text are elaborated upon. Also addressed is the impact upon 

safeguards implementation for such states since the introduc-

tion of the modified SQP text. Suggestions are made as to ef-

ficiencies which could be achieved in respect of safeguards for 

such SQP states.

Introduction
It is more than forty years since the Board of Governors of 

the International Atomic Energy Agency (IAEA) established the 

Safeguards Committee (1970), or Committee 22, to draw up 

the structure and contents of safeguards agreements between 

states and the Agency required in connection with the Treaty 

on the Nonproliferation of Nuclear Weapons (the NPT).1 As 

such, almost everyone who was involved in that process has 

long since retired.

It is hardly surprising that the origins of the small quanti-

ties protocol (SQP) to a comprehensive safeguards aggrement 

(CSA) and its purpose have faded into obscurity. This paper at-

tempts to redress that situation and to elaborate on why the 

IAEA considered it necessary to revisit the SQP and to modify it.

The paper also looks at the implementation of safeguards 

under safeguards agreements with SQPs and explores where 

efficiencies can be introduced.

The Origin of the SQP
In February and March 1971, Committee 22 presented its 

formulation for the content and structure of NPT safeguards 

agreements, which became INFCIRC/153 (Corr),[2] but made 

no mention of exceptions to the provisions of such safeguards 

agreements.

At the board meeting in February 1972, three draft safe-

guards agreements with protocols holding in abeyance the 

implementation of most of Part II of the agreements (i.e., for 

Ireland, New Zealand, and Malaysia), were presented for ap-

proval. In connection with each of these safeguards agree-

ments, the official record noted that the board took the action 

recommended (which was to approve the safeguards agree-

ment with the IAEA) without any record of further discussion. 

This seems odd given that the foreword to the text of Ireland’s 

agreement and protocols stated that comments on the proto-

cols would be useful. In 2003, the Secretariat, in its review of 

the policy surrounding the model SQP, was unable to trace any 

record of negotiation of these three SQPs.

In the document submitting the draft Safeguards Agree-

ment for Ireland for approval, the preamble also stated the fol-

lowing: “…the Irish authorities have informed the Secretariat 

that Ireland only has at present, in peaceful nuclear activities 

within its territory or under its jurisdiction or control anywhere, 

nuclear material in quantities below the limits stated in Article 

36 of the agreement, and that this material is not in a facility.” 

On that basis, the Secretariat of the IAEA and Ireland agreed on 

the protocol that would “reduce to a minimum the implementa-

tion of safeguards procedures under Part II of the agreement.”

While it is true that Ireland did not have nuclear material 

subject to the Agreement in a facility as defined in Article 97.J 

of the Agreement, it did have nuclear material in substantial 

amounts in a sub-critical assembly4 (a nuclear activity but not 

a nuclear facility), which constituted a “material balance area 

outside facilities,” for which information would otherwise have 

had to be supplied under Article 48 of the Agreement. Howev-

er, that provision was held in the abeyance by Protocol Number 

I of the Agreement. At the same time, New Zealand also had 

nuclear material in a sub-critical assembly.5

The same type of protocol was approved for a number 

of states until 1973 when, in the absence of any board dis-

cussion, it was recognized by one governor that the protocol 

had become, de facto, a standard for member states having 

no notable nuclear activities requiring the application of safe-

guards. This Governor proposed that the Secretariat publish a 

standard text for NPT agreements and simply inform the board 
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of any deviations from that standard. In response, the Secre-

tariat published GOV/INF/276,3 which set out the standard text 

for comprehensive NPT safeguards agreement as Annex A to 

that GOV/INF, but more pertinently, the standard text for SQPs, 

which was attached as Annex B.

The Obligations and Weaknesses of the SQP
Under all CSAs, the IAEA has the right and obligation to verify 

that all nuclear material required to be safeguarded is in fact 

placed under safeguards, in accordance with the terms of the 

agreement. However, SQPs based on the original model hold 

in abeyance, or suspend, most of the provisions of Part II of 

the safeguards agreement, including those governing inspec-

tions, if the state met the eligibility requirements, i.e., it has 

nuclear material in amounts less than the limits specified in the 

agreement and has no nuclear material in a facility. The SQP did 

not obviate the requirements to establish a state system of ac-

counting for and control of nuclear material or to report imports 

and exports of nuclear material.

To enable the timely (undefined) conclusion of Subsidiary 

Arrangements to its CSA, the SQP state was required to notify 

the IAEA sufficiently in advance of exceeding the limits of nu-

clear material or six months before the introduction of nuclear 

material into a facility, whichever occurred first.

Having an SQP allowed the state to have an existing nu-

clear facility but not provide the IAEA with design information 

so long as there was no nuclear material in the facility. After 

the discovery and dismantling of Iraq’s clandestine nuclear 

weapons programme, the IAEA’s efforts to strengthen the 

safeguards system by requiring states to provide design infor-

mation at an early stage were negated in CSAs with such SQPs 

by virtue of its provisions.

The major failing of the original text SQP, in the Secretar-

iat’s view, was that the IAEA was unable to verify that a state 

met or continued to meet the eligibility criteria. In the absence 

of reports on nuclear material from an SQP state, the expec-

tation that the IAEA would ensure that all nuclear material in 

peaceful nuclear activities had been declared and satisfy itself 

that the declarations were complete could not be met.

For an SQP state without an additional protocol4 in force, 

the Department of Safeguards recognized the weakness in 

drawing the conclusion that declared nuclear material remained 

in peaceful nuclear activities when there had patently been no 

such declaration for fifty-eight of the seventy-one states at that 

time with operative SQPs. The Safeguards Implementation Re-

port (SIR) for 2003 elaborated on the issue with the caution 

that: “…for a state in which an SQP is implemented but which 

does not have an additional protocol in force, the Agency has 

only very limited means to evaluate any potential nuclear activi-

ties in the state which might need to be declared to the Agen-

cy, or to confirm that the state meets or continues to meet the 

conditions required for having an operative SQP.”

The Secretariat brought to the board’s attention the short-

comings of SQPs and proposed possible solutions in a report 

by the Director General (DG) dated May 13, 2005. This action, 

however, was not taken in isolation—consultations with in-

terested states took place between February and May 2005 

on the basis of a Secretariat “Non-Paper” that drew member 

states’ attention to the need to strengthen safeguards in re-

spect of SQPs.

The DG’s report suggested two possible solutions:

• The board would not approve any further CSAs with SQPs 

and existing SQPs would be rescinded; or 

• If SQPs were to continue to be accepted, the text would 

be modified to make an SQP unavailable to a state with 

a planned or existing (nuclear) facility, to make provision 

of an initial report on nuclear material a requirement, to 

require the early provision of design information, and im-

portantly, to make provision for IAEA inspections.

The board was invited to provide guidance to the Secre-

tariat on how it wished to proceed in addressing the SQP is-

sues. At the September 2005 Board meeting, the board chose 

to retain the acceptance of SQPs, but decided that it would, 

in future, approve only those SQPs which were modified as 

per the Secretariat’s recommendation in the second option 

reflected above. The Board instructed the DG to effect that 

change in existing SQPs through an exchange of letters with 

each state—such exchanges of letters started soon thereafter.

The Secretariat indicated in its report to the Board that 

it did not foresee regular verification in states with modified 

SQPs and that there would be no measurable increase in safe-

guards costs to the IAEA. In addition, it noted that there would 

be little additional cost for states that revised or rescinded their 

SQPs, provided that the state had a mechanism in place to 

monitor its nuclear and other radioactive material. The board 

took note of that information.
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Safeguards Implementation under the 
Modified SQP
In the Annex to the DG’s report to the board of May 2005 the 

following data was quoted: Of the states with CSAs in place, 

eighty-seven had SQPs, seventy-five of which were in force 

and operative, i.e., the states still met the eligibility criteria; and 

thirty-eight SQP states had additional protocols approved by 

the board of which twenty were in force. However, the Board 

was aware that many SQP states at the time did not have dip-

lomatic missions in Vienna and some were not members of 

the IAEA.

The modified text of the SQP revised the eligibility criteria 

for an SQP, it reduced the number of provisions of the SQP 

which were held in abeyance and so placed new obligations on 

the part of an SQP state. The eligibility criteria still included the 

requirement that the state had minimal or no nuclear material. 

However, if a state already had a nuclear facility without nucle-

ar material or had taken a decision to construct, or to authorize 

construction of, a nuclear facility, the state would be ineligible 

to have an SQP. In such a case, instead of modifying its SQP, 

the state would rescind its SQP. 

The new, previously held in abeyance, obligations of a 

state with a modified SQP included providing an initial report to 

the IAEA on all the nuclear material in the state, including infor-

mation on the location and usage of the nuclear material, and 

providing design information for any planned nuclear facility). 

The initial report places a responsibility on the state authority 

designated as responsible for safeguards to identify and locate 

all nuclear material subject to safeguards1 in the state and bring 

it under control. The nuclear material should be listed in the ini-

tial report and should be made available for verification during 

an IAEA inspection, should one occur.

The authority of the IAEA to inspect and verify nuclear 

material in the initial nuclear material inventory report submit-

ted by the state was the single, most important strengthening 

measure of the modified SQP.

To provide some balance in the system, the ability of an 

SQP state to request exemption of nuclear material from safe-

guards was no longer held in abeyance in the modified SQP. 

Table 1 provides a comparison of the obligations of states un-

der the original SQP and the modified version.

While the obligations for SQP states are uniform, SQP 

states vary widely. The size of SQP states ranges from less 

than 1 km2 to greater than 2.1 million km2. Their populations 

range from less than one thousand to more than 90 million. 

Some SQP states also have large-scale uranium mining activi-

ties, highly advanced industrial capabilities or plans for generat-

ing nuclear power.

For a state with a modified SQP, if it has nuclear mate-

rial which is suitable for fuel fabrication or isotopic enrichment 

even in quantities less than the SQP limits, this inventory must 

be declared in its initial report, and if the state has an AP in 

force, site information has to be provided for each location 

where the material is held.

While the obligations and reporting requirements for SQP 

states with modified SQPs are relatively clear, what is not clear 

for many outside the IAEA is what safeguards activities the 

Secretariat performs for such states.

Safeguards Activities for SQP States
As for all other states with CSAs, upon receipt of initial and 

other reports—and declarations under the AP, if applicable—the 

Secretariat establishes and/or updates the state inventory of 

nuclear material. Thereafter, the state evaluation group (SEG), 

which is a multi-disciplinary team consisting of inspectors and 

analysts, performs consistency analysis on the information 

to determine if it is internally consistent and consistent with 

safeguards-relevant information in IAEA databases, such as Di-

rectory of Radiotherapy Centers (DIRAC), and information from 

other sources.

The SEG, having analysed all safeguards relevant informa-

tion for an SQP state, will then develop or update the state-

level safeguards approach (SLA), which includes evaluating 

whether or not there are any plausible paths for the acquisi-

tion of nuclear material suitable for use in a nuclear explosive 

device. In the case of an SQP state, source material could be 

obtained by undeclared import or undeclared production in a 

conventional mine or as a by-product of gold, copper, or phos-

phate production.

Table 1. Comparison of obligations

Obligations Original SQP Modified SQP

Establish an SSAC Yes Yes

Submit initial report No Yes

Report import/export of 
nuclear material

Yes Yes

Early provision of design 
information

6 months before 
nuclear material in a 
facility

Notify of decision to 
construct or to authorize 
construction of a facility

Inspections No Yes
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Technical safeguards objectives are identified, which are 

focused on detecting and deterring any possible undeclared nu-

clear material or activities, and safeguards measures required 

to meet the technical objectives are identified. To detect un-

declared import of nuclear material, the safeguards measures 

to address that objective would include the comparison of a 

state’s import/export reports and declarations with those from 

other states, monitoring open sources and perhaps performing 

complementary access, if the SQP state has an AP in force.

The SLA development process is illustrated in Figure 1, 

using the example of an SQP state with no declared or known 

uranium mining or other nuclear-related activities. The process 

is exactly the same as that used for a CSA state without an 

SQP, but takes into account the specificity of SQP states.

In states with a modified SQP, the IAEA may perform ad 

hoc inspections to verify the information contained in the ini-

tial report and to identify and verify any changes that have oc-

curred since the date of the initial report. As for all CSA states, 

a modified SQP state is notified at least seven days in advance 

of an inspection and of the location for the inspection. For a 

state with an AP, the IAEA may perform complementary ac-

cess with two hours notice, when in conjunction with an ad 

hoc inspection. In all other cases, at least twenty-four hours 

notice is provided for complementary access.

The scale of the IAEA’s in-field verification activities in SQP 

states is small. The number of SQP states where in-field veri-

fication activities occurred in a calendar year ranges from 1 to 

4 over the past few years. The calendar days spent in SQP 

states for verification activities in 2014 was 29.5 days, which 

represents 0.2 percent of the total spent for all states.

State Evaluation and Drawing  
Safeguards Conclusions
The process of drawing safeguards conclusions for SQP states 

is the same as for other states with CSAs in force. It is de-

signed to ensure that the conclusions are valid and based on an 

appropriate level of safeguards activities. The SEGs regularly 

evaluate all the safeguards relevant information available for 

an SQP state, especially information from in-field activities and 

the results of the SEG’s consistency analysis. Its safeguards 

findings and conclusions are documented in a State Evaluation 

Report (SER). One of the assessments made is whether the 

state continues to be eligible to have an operational SQP. An 

internal committee reviews the SER and makes recommenda-

tions on safeguards conclusions to the DG who reports the 

Secretariat’s findings and conclusions to the Board in the an-

nual SIR.

For states with CSAs (with or without SQPs) and APs in 

force, there are two typical variations of safeguards conclu-

sions:

• If the Secretariat found no indication of the diversion of 

declared nuclear material from peaceful activities and no 

indication of undeclared nuclear material or activities, the 

Secretariat concludes, on that basis, that all nuclear mate-

rial remained in peaceful activities;

• If the Secretariat found no indication of the diversion of 

declared nuclear material, but evaluations regarding the 

absence of undeclared nuclear material and activities were 

ongoing (such as the situation where initial AP declarations 

had not been received), the Secretariat concludes, on that 

basis, that declared nuclear material remained in peace-

ful activities.

For a state without an AP, while the IAEA looks for indi-

cations of undeclared nuclear material and activities, it cannot 

and does not report any conclusions regarding the absence of 

undeclared nuclear material and activities. For these states, the 

formulation of the safeguards conclusion is: If the Secretariat 

found no indication of diversion of declared nuclear material, 

the Secretariat concludes, on that basis that declared nuclear 

material remained in peaceful activities.

However, the cautionary text of the SIR for 2003 still ap-

plies, i.e., for an SQP state without an AP, the Secretariat has 

only limited means to evaluate any potential nuclear activities 

in the state which might need to be declared to the IAEA, or 

that the state still qualifies to have an operative SQP. In addi-

Figure 1. Example of the development of an SLA for an SQP state
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tion, in the absence of an initial report, there is no declaration 

of nuclear material as such and therefore, drawing a conclusion 

regarding the absence of diversion of “declared nuclear mate-

rial” remains problematic.

Challenges for SQP States
As mentioned above, in the DG’s 2005 report to the board pro-

posing modification of the SQP text, the Secretariat indicated 

there would be little additional cost to a state that modified or 

rescinded its SQP, provided that the state had a mechanism in 

place to monitor nuclear and other radioactive materials. The 

Secretariat is aware that many states with SQPs have no such 

mechanism in place and therefore had to establish state sys-

tems of accounting for and control of nuclear material (SSACs). 

To do that, many states had to undertake lengthy legal pro-

cesses to establish accounting and control systems and to set 

up authorities to implement them.

Establishing these state authorities meant that resources 

had to be provided, both financial and human, which often led 

to competition for funds with other government bodies. In ad-

dition, many SQP states simply did not have the technical ex-

pertise available to establish and maintain a system to account 

for and control nuclear material.

The SIR continues to highlight concerns associated with 

the effectiveness of states’ systems, concerns which are not 

confined to SQP states. However, for the ninety-five SQP 

states, the Secretariat considered that for many, communica-

tions with the point of contact responsible for safeguards mat-

ters were such that the efficiency of safeguards was reduced 

and where there was no established point of contact with 

whom to communicate, the effectiveness of safeguards was 

reduced. As in 2005, many SQP states do not have diplomatic 

missions in Vienna. Many SQP states lack sufficient legal struc-

tures, i.e., laws and/or regulations, to establish a functioning 

state safeguards authority. 

To assist SQP states in understanding their obligations un-

der their SQPs and APs, the IAEA hosts regional workshops, 

and supports regional and international training courses on 

SSACs, some of which are directed solely towards SQP states. 

In 2013, the IAEA published the Safeguards Implementation 

Guide for States with Small Quantities Protocols (IAEA Ser-

vices Series 22) and translated it into French and Spanish. The 

IAEA also meets with representatives from SQP states in Vi-

enna when opportunities arise, such as on the margins of the 

General Conference.

The Way Forward 
As of the end of 2014, there were ninety-five operative SQPs 

in force. Figure 2 depicts the conclusion of new SQPs and the 

rate of modification of SQPs.

For the forty SQP states which have provided their initial 

reports, a total of 1.24 significant quantities (SQs) of nuclear 

material have been placed under safeguards, of which all but 

0.022 SQs was natural or depleted uranium. This is a small 

fraction of the material under safeguards in the world, but hav-

ing correct and timely information from SQP states helps the 

IAEA to match global imports and exports of nuclear material, 

and to confirm the continued eligibility of the state to have an 

operational SQP.

Streamlining SQP State Reporting 
Under a CSA with a modified SQP, if there are no transactions 

involving nuclear material in a given year, the state does not 

have to submit reports to the IAEA. However, under the ad-

ditional protocol, there is no such relief—declarations are re-

quired even when there is nothing to declare. Such declarations 

are mostly compiled using IAEA software “Protocol Reporter 

Version 2,” which is typically installed on a specific computer 

at the state safeguards authority. 

To make additional protocol reporting as easy as possible 

for states with little or nothing to report, the IAEA is working on 

Figure 2. States with SQPs
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creating a web-based Protocol Reporter application that states 

can have access to online and prepare and submit declarations 

from any computer, while ensuring the integrity of the data-

base. The web-based platform obviates the need to distribute 

copies of new releases of the software. There are, however, 

security considerations associated with web-based submis-

sions, but none of them are insurmountable. In the future, as 

additional enhancements are made, the IAEA could consider 

developing a secure, integrated, web-based tool for SQP states 

that enables submittal of both nuclear material accounting re-

ports and AP declarations to be compiled using one system, 

with submittals possible throughout the year as needed. 

Conclusions
The modified text of the small quantities protocol has been a 

success in addressing the weaknesses associated with its pre-

decessor. However, the modified SQP is only effective in so far 

as it is adopted and implemented by states. Recognizing that 

the implementation of the modified SQP may pose a challenge 

for some states, the IAEA offers assistance and is working to 

streamline reporting mechanisms and enhance cooperation 

with these states.6
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Abstract 
The Geospatial Exploitation System (GES) is an enterprise-wide 

system used to analyse satellite imagery, geospatial informa-

tion and associated assets for staff within the International 

Atomic Energy Agency (IAEA) Department of Safeguards. The 

GES has been deployed in the Department’s isolated secure In-

tegrated Safeguards Environment and is able to store, manage, 

process and securely serve geospatial data to users across the 

Department. The GES demonstrates the benefits of commer-

cial off-the-shelf software integration that extends safeguards 

(SG) specific processes while retaining the strengths, and in 

cases enhances the use, of each software package while main-

taining a cohesive look and feel to the interface. By employing 

service oriented architecture, the system is able to share and 

consume valuable information from disparate applications and 

sources from across the Department. This paper describes the 

last four years of effort to deploy the GES by describing the 

system components, applied workflows, the system IT envi-

ronment and the benefits realized since deployment to users. 

Introduction 
One of the projects under the International Atomic Energy 

Agency’s (IAEA) Development and Implementation Support 

Program for Nuclear Verification (International Atomic Energy 

Agency 2013) is commercial satellite imagery. The objective of 

this project is to develop and implement streamlined work-

flows and improved techniques for exploiting commercial sat-

ellite imagery and to produce imagery analysis reports and 

Geographic Information System (GIS) site plans in support of 

nuclear safeguards. The project supports the Department’s 

Long-Term R&D Plan 2012-2023 (International Atomic Energy 

Agency 2012), which sets out the capabilities needed by the 

Department of Safeguards to achieve its strategic objectives. 

Included in these are the development of analytical methodolo-

gies, tools and techniques to detect signatures of undeclared 

activity and improve analysis of nuclear fuel cycles. Using a 

combination of voluntary contributions from member states 

and IAEA Regular Budget, the Department of Safeguard’s Divi-

sion of Information Management initiated a project to upgrade 

its imagery analysis infrastructure. 

In 2009, technical specifications were developed and a 

competitive bid tendered for the design and development of 

a custom software system for the processing, storing, manag-

ing, retrieving, creation and analysis of imagery and GIS data. 

The requirements for the system included the ability to man-

age the complete image analysis cycle from initial task request 

through to digital report dissemination and the ability to adopt 

the Department of Safeguards standards for data security that 

provide for a robust and granular security model. In January 

2010, the winning contractor was selected and a contract was 

awarded. The IAEA’s Geospatial Exploitation System (GES) 

project started in mid-2010.

In December 2011, the IAEA formally accepted the GES. 

GES was the first analytical application specifically developed 

and successfully deployed into the IAEA’s Integrated Safe-

guards Environment (ISE) – ISE is described in more detail later 

in this paper. GES was designed to serve geospatial data to 

analysts, disseminate derived products to safeguards users 

and make geospatial services in the form of maps and imagery 

available for consumption by other applications that reside with-

in ISE. In early 2012, terabytes of Department of Safeguards’ 

data was migrated into ISE. In mid-2012, GES deployment for 

users across the Department of Safeguards began with a small 

number of State Evaluation Groups (SEGs) and after testing 

the system and incorporating the results, by 2013, the system 

was deployed across the Department of Safeguards and made 

available to all SEGs. 

The Use of Geospatial Information at 
the International Atomic Energy Agency
In the early 1990s, the United States’ Land Remote Sensing 

Policy Act streamlined the procedure for considering license 

Figure 2. Processes to support safeguards implementation for 

The Implementation and Use of the Geospatial Exploitation System 
within the IAEA’s Department of Safeguards

Joshua Rutkowski, Karen Steinmaus, Finn Dahl, Stephen W. Robb, and Remzi Kirkgoeze 
International Atomic Energy Agency, Vienna, Austria
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applications for commercial imaging satellites, eliminating many 

of the prior obstacles to such applications. Given the change in 

policy, the IKONOS satellite provided the public with the first 

access to high resolution satellite imagery. The Department of 

Safeguards then embarked on a series of tasks designed to 

investigate the potential uses of commercial satellite imagery 

(CSI) in support of safeguards implementation.

At the request of the Department of Safeguards, the IAEA’s 

Office of Legal Affairs, in 1998, carried out an analysis of the 

legal issues associated with the IAEA’s use of CSI for safeguards 

purposes. In its analysis, OLA endorsed the IAEA’s acquisition 

and use of CSI for the purposes of facilitating the implementa-

tion of safeguards, citing, in particular, confirmation by the Board 

of Governors in 1995 of the IAEA’s authority to take into account 

all safeguards-relevant information, including that derived from 

open sources (International Atomic Energy Agency 1995). 

In 1999, the IAEA acquired the first high-resolution earth 

observation satellite image from Space Imaging’s IKONOS sat-

ellite. The availability of one-meter resolution CSI meant the 

Department of Safeguards could, for the first time, use satel-

lite-based sensors to clearly identify buildings and structures 

associated with a nuclear facility. In 2001, a CSI database of 

nuclear sites was created using GIS technology and by the next 

year came into routine use by analysts in the Department of 

Safeguards (International Atomic Energy Agency 2001).

The use of geographic information systems to support 

United Nations missions is commonplace and can be seen in 

a wide range of uses from humanitarian efforts, peacekeeping 

operations and territorial dispute resolution. The work of the 

United Nations Office on Drugs and Crime (UNODC) focusses 

on security and justice and employs GIS throughout their mis-

sion, e.g., to map areas with prevalence of criminal activities 

and the environmental and socio-economic conditions where 

these take place to plan policy interventions. The United Na-

tions Geospatial Information Section (formerly Cartographic 

Section) provides geospatial and cartographic products and ser-

Figure 1. The globe interface of the Department of Safeguards’ Geospatial Exploitation System (GES)
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vices to decision makers in the Security Council and United 

Nations Secretariat, both at strategic and operational levels.1  

The Section also provides support to member states directly 

through international boundary projects and an inter-govern-

mental process of a Committee of Experts on Global Geospa-

tial Information Management (UN-GGIM).

Much has been published on the role of CSI for nonprolif-

eration monitoring. Organizations such as the European Safe-

guards Research and Development Association (ESARDA) 

and the Institute of Nuclear Materials Management (INMM) 

provide forums where topics related to international safe-

guards are discussed and presented. These organizations are 

credited with publishing numerous reports in the area of sat-

ellite imagery, comprehensively addressing all aspects of re-

mote sensing applications—from sensors to data exploitation. 

Avenhaus, et al.2   presents an interdisciplinary collection of 

expert analyses and views of existing verification systems by 

providing guidelines and advice for the improvement of those 

systems as well as for new challenges in the field. Baker.3   

was one of the first comprehensive publications addressing 

the benefits and political challenges of commercial satellite 

imagery. Jasani4 focused attention specifically on internation-

al safeguards and the role of satellite imagery. More recently 

Lafitte and Robin5 discuss the use of satellite imagery at the 

European Union Satellite Center and its role in supporting 

decision-making for the European Union. 

At the IAEA, CSI has become an important information 

tool for remotely monitoring nuclear sites and activities. CSI 

plays a significant role in monitoring nuclear fuel cycle (NFC) 

sites and activities, verifying states’ declarations, planning and 

supporting verification activities, and detecting and investigat-

ing undeclared activities. The use of a GIS is critical to this en-

deavor as it makes it possible to combine and compare the 

geographic information contained within CSI with other data 

sources covering the same geographic extent. The use of GIS 

permits analysts to process, store, manage, retrieve and cre-

ate geospatial data as well as analyze this information spatially. 

Since the launch of IKONOS in 1999, the number and ca-

pabilities associated with earth imaging satellites has increased 

dramatically. The IAEA has regular access to data from more 

than twenty different earth observation satellites. The conver-

gence of remote sensing, geospatial, and web technologies 

is creating unprecedented use and demand for GIS solutions. 

Open standards and interoperability between the various tech-

nologies provides possibilities to use the data cumulatively for 

analysis. In the declarations submitted pursuant to an addi-

tional protocol to a safeguards agreement6 states shall submit 

“a general description of each building on each site, including 

its use …” and “the description shall include a map of the 

site.” The modern methods for creating and maintaining site 

maps rely on computer aided design (CAD) or GIS software 

packages. As part of these declarations, the state submits a 

drawing or annotated image of the site. No longer is the use 

of geographic information a nice-to-have feature, it is a neces-

sary component, because a vast expanse of the data landscape 

within the Department of Safeguards exists in a geographic 

context. 

Many modern hardware devices collect global navigation 

system data or are somehow linked to a geographic location. 

Nuclear facility operators use such location-oriented systems 

to manage their facilities7 and hold the potential to share such 

information through their safeguards’ declarations. 

The state-level concept involves the evaluation of all safe-

guards-relevant information in order to draw soundly-based 

conclusions and therefore takes full benefit from geographic 

information, including CSI and products derived therefrom.  

Typical uses of CSI in the processes supporting safeguards 

implementation (International Atomic Energy Agency 2013) 

Figure 2. Processes to support safeguards implementation for all states 
with safeguards agreements
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include collecting and evaluating information and planning, 

conducting and evaluating safeguards activities. Another im-

portant objective of creating an Integrated Safeguards Environ-

ment is to implement a variety of analytical capabilities that 

will make it possible to explore complex, disparate data from 

different perspectives. Amongst these analytical capabilities is 

the GES, a powerful analytic tool that provides the analyst with 

an enhanced ability to undertake comparative analysis of state 

declarations with other safeguards-relevant information for the 

purpose of drawing sound safeguards conclusions.

In addition to being a tool used for the exploitation of 

commercial satellite imagery and other geographic informa-

tion, it will also be used as a gateway to access all-source 

safeguards information, or at least information that is geo-

graphically referenced, and present it in a geospatial con-

text. Examples include access to state declaration data 

through a reengineered Additional Protocol System (APS), 

the locations environmental sampling at a site or location,  

site photographs, open source information, etc. Future plans 

for enhancement of the GES include the development of a 

light, web-based user interface with expanded functionality 

and improved performance.  In addition, there is a continual 

need to incorporate new sensors and satellite systems (e.g., 

satellite video) as they become available throught the com-

mercial markets.

Description of the Geospatial  
Exploitation System (GES)
The GES is an enterprise-wide system used by Department 

of Safeguards’ staff to process, store, manage, retrieve, and 

create geospatial data, and analyze this information spatially. 

The GES was designed to address the needs of geospatial 

and imagery analysts as well as provide Department of Safe-

guards’ users with geospatial products. To enable the sharing 

of geospatial data and derived products, the GES uses service-

oriented architecture (SOA). This section describes the GES’s 

data and architecture as well as common workflows supported 

by the system.

The Department of Safeguards GES uses industry stan-

dard enterprise GIS as its core technology. The GES was de-

signed to be deployed in the Department’s secure ISE and to 

accommodate the Department’s spatial data requirements. A 

description of ISE is described later in this paper. 

The geodatabase stores geographic information for all of 

the Department’s locations of interest. Imagery is managed 

and maintained through the use of commercial off-the-shelf 

(COTS) server technologies. 

The GES is specifically designed to allow for the integra-

tion of COTS GIS and imagery analysis technologies with other 

safeguards (SG) specific applications and data. COTS soft-

ware provides geospatial and imagery analysts with advanced 

analytical software tools that are used for processing, storing, 

managing, retrieving, and creating geospatial data as well as 

analyzing this information spatially. 

Not only is it important to monitor sites through time by 

evaluating changes in imagery, it is also important to evalu-

ate temporal changes in the site’s infrastructure. Working 

alongside the imagery analysts are geospatial analysts who 

digitize and attribute geographic information for site boundar-

ies, buildings, utilities, etc. that are stored and maintained in 

the geodatabase. The geospatial analysts refer to this work-

flow as “site plan creation“ and it includes imagery analysis, 

digitizing and attribution of the map data, quality assurance 

and dissemination. Analytical reports written by the satellite 

imagery analyst and any supporting documentation (relevant 

open source content, pictures, videos, audio, etc.) are associ-

ated with a site and are uploaded into the GES and available 

securely to authorized users. 

The GES user interface, the Geobrowser, is used by 

analysts and inspectors to retrieve information on sites that 

they have been authorized to view. The GES is structured in 

such a way that it supports multiple users based on the type 

Figure 3. Architectural overview of the Department of Safeguards’ 
Geospatial Exploitation System within the integrated safeguards 
environment
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of business function the user performs in the Department of 

Safeguards. The user’s GES role is tightly coupled with their 

business workflow. Geospatial analysts have access and func-

tionality to create site plans that provide the ability to associ-

ate vector features and other attributes to the buildings and 

infrastructure supporting a nuclear facility. Imagery analysts are 

able to load imagery to their preferred exploitation software in 

order to perform their analysis. Imagery clerks are responsible 

for maintaining the imagery repository, uploading metadata for 

satellite imagery, and maintaining records. Data clerks can up-

load new assets in the GES. Section heads and team leads can 

create new areas of interest, approve access to new imagery 

and carry out the workflows for approving assets and reports. 

Depending on their role and responsibility, other users of the 

GES have the ability to search and discover satellite imagery, 

imagery analysis reports and associated documents stored in 

the GES.  

Description of Integrated Safeguards 
Environment (ISE)
Integrated Safeguards Environment (ISE) is a secure IT envi-

ronment used within the Safeguards Department. The purpose 

of ISE is to provide a Department-wide collaborative environ-

ment, enabling people to leverage the large volumes of data 

that were previously stored on multiple, disconnected systems 

in disparate locations. ISE uses a layered architecture that en-

forces security and a separation of functions between the lay-

ers. There are four layers, called security zones, which in effect 

are independent networks separated by firewalls that control 

access and communication protocols.

Satellite imagery analysis reports are available on ISE as 

a service.  The reports stored in the GES are made available 

to other applications in ISE. The availability of the reports as 

a service ensures that authenticated users are able to gain 

access to satellite imagery reports from various software 

interfaces available in ISE. For instance, the Department’s 

“Electronic State File” use this service. The GES consumes 

services from some other applications on ISE products. For 

example, to ensure data consistency across the Department, 

the GES requires the use of naming conventions derived from 

the Safeguards Master Data.

In 2014, the IAEA reported to the Board of Governors 

on a project for the Modernization of Safeguards Information 

Technology (MOSAIC). The paper described the much-needed 

longer-term enhancements to the safeguards IT platform and 

outlined plans for achieving these objectives over a four year 

period. In order to implement MOSAIC, a financial commitment 

and support from member states as well as a step-by-step ap-

proach involving both procedural adjustments and technical 

tasks by the Secretariat are required. As part of the MOSAIC 

project, plans are in place to enhance the current GES system. 

Additionally, focus will be placed on improving data integration/

interoperability between relevant MOSAIC applications and 

their datasets as referenced above.

Benefits
The Department of Safeguards has deployed the GES into the 

Department’s highly secure ISE. The GES achieved a first step 

toward the Department goal for deploying and integrating soft-

ware applications and systems into the secure IT environment 

aiming to provide immediate and secure access to all available 

information for those who need it. Integrating the GES into the 

ISE environment is a significant achievement due to the com-

plexity of the security requirements and methods necessary 

for protecting confidentiality. The GES provides capabilities for 

users across the Department to efficiently gain access to imag-

ery and geospatial data. 

GES was the first analytical capability to be deployed in 

ISE.  Until 2012, satellite imagery analysis reports and geo-

spatial map products were distributed in hardcopy. With the 

deployment of the GES, all reports, including those produced 

prior to its launch, are digitally disseminated and archived, and 

can be securely accessed through a service in the GES and 

other ISE applications—on a need to know basis. 

The workflow for both imagery and geospatial analysts has 

improved since analysts can access relevant data from a single 

application. The GES supports the entire imagery analysis cycle 

from image ingest through digital report dissemination. After 

receipt of an image, semi-automated tools are used for pre-

processing the data and generating a series of standard im-

Figure 4. Overview of ISE zones
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age products that are ingested into the GES. Quality controls 

are applied at each step of the process to ensure naming con-

ventions, metadata attributes, image display quality and site 

affiliation are correct. Imagery is stored in the IAEA’s Secure 

Data Center. Keeping the imagery and analytical reports on a 

secure central storage, enabled the implementation of security 

and access control as per the safeguards policy and guidelines.  

The central storage also made significant improvements in the 

maintenance and management of geospatial, such as the criti-

cal function of backup. COTS exploitation system software is 

effectively integrated into the GES architecture to enable ana-

lysts to consume securely streamed image and vector data ser-

vices directly from the GES. 

The GES will further provide improved and secure access 

to other Department of Safeguards’ information within a col-

laborative environment. Establishing such capabilities neces-

sitates new standards to categorize and organize information, 

naming conventions, and further interoperability among soft-

ware applications. As an example, the GES uses facility infor-

mation from the Safeguards Master Data to identify the facili-

ties on a site. 

Conclusion
The Department of Safeguards deployed the GES into the De-

partment’s highly secured environment known as ISE, achiev-

ing a first step towards the goal to integrate software applica-

tions and systems and provide immediate access to all available 

information for those who need it. Integrating the GES into the 

ISE environment comes as a significant achievement due to 

the complexity of the access control and information security 

requirements. Today, the GES provides capabilities for users 

across the Department to efficiently gain access to imagery 

and geospatial data on a need to know basis. In the future, with 

the integration of more safeguards-relevant data and applica-

tions in ISE under the MOSAIC project, the GES will evolve, 

including through the adaptation of its architecture, to exploit 

other safeguards-relevant information such as state reports 

and declarations, environmental sampling locations, inspection 

reports, etc. Conversely, other applications within ISE may ben-

efit from imagery, site plans, and analytic products. 
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Abstract
The International Atomic Energy Agency has developed a pro-

totype liquid scintillator-based neutron coincidence collar in 

collaboration with the European Commission (EC) Joint Re-

search Centre in ISPRA and Hybrid Instruments, Ltd. (UK). The 

fast-neutron detection capabilities are particularly beneficial 

for coincidence counting safeguards applications. Detection 

of neutrons from fission events does not require a thermaliza-

tion process, thus neutrons coming from the same event are 

detected with almost zero delay. This feature makes possible 

the minimization of the detector coincidence gate to ~60 ns, 

and thus a three orders of magnitude reduction in accidentals. 

This enables the system to work in a low-signal condition (e.g., 

fast-mode fresh fuel interrogation) with an acceptable signal-

to-noise ratio. This results in significantly lower measurement 

statistical error compared to the standard 3He-based thermal 

neutron detectors. This activity has been partly sponsored by 

the UK, Netherlands, and EC Support Programs to IAEA Safe-

guards.

Introduction
Thermal neutron coincidence counters have been typically used 

in the determination of mass of safeguarded nuclear material. 

The high detection efficiency for 3He-based detectors and their 

insensitivity to gamma rays have made this technology the pri-

mary one used for nuclear material assay.

One of the key mass measurements in the nuclear fuel cy-

cle is performed at fuel fabrication facilities shortly before fresh 

fuel (FF) assemblies are shipped to nuclear power plants. Here, 

neutron coincidence counters are employed to verify the fuel 

enrichment as declared by the operator. For uranium FF assem-

blies, the low spontaneous fission rate of 235U (as compared 

to 238U) requires the use of “active interrogation” methods to 

assess the 235U quantity in the fuel. This is typically performed 

with alpha-n sources, such as AmLi, whose neutron energy 

spectra are much softer than fission spectra. 

Reactor fuel producers are increasingly using burnable poi-

son rods (e.g., Gd, B) in fuel assemblies to increase the fuel 

efficiency and lifetime. While this technique is very useful for 

optimizing the service life of assemblies in a reactor, it directly 

interferes with the active interrogation technique. The correc-

tion needed to account for the presence of poison is sizable, 

and depends both on the amount of poison and its physical 

distribution. A very accurate declaration by the operator helps 

to correct the measured response, allowing for a more precise 

estimation of 235U in the assembly, but this indirect measure-

ment technique creates vulnerabilities to diversion scenarios.

To gain more independence from burnable poison rod dec-

larations, a modified interrogation method is typically used. A 

cadmium liner is placed around the FF assembly (i.e., in the 

cavity of the neutron coincidence collar) to filter out all “slow” 

neutrons in the region of the neutron spectrum, which is pref-
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erentially absorbed by the burnable poisons (i.e., those below 

1.25 eV). This mode of operation is referred to as “fast mode,” 

with “thermal mode” being the classical mode without the 

cadmium liner. By operating in fast mode, 235U is interrogated 

using a limited portion of neutron spectrum (above 1.25 eV), 

which substantially decreases the resulting amount of spontane-

ous fission and consequently, the detector response (Figure 1). 

For thermal neutron detectors (e.g., 3He-based), coinci-

dence measurements are performed by first opening a “coinci-

dence gate” after the first neutron is detected. The width of this 

gate is preset (based on analysis of the detector’s response) to 

accept subsequent neutrons from the same fission event. This 

gate is of the order of 100 µs in width, and accounts for the de-

lay in neutron thermalization before detection. For such a wide 

gate, the probability of accidental coincidences (the majority 

due to the interrogation source) is very high. The number of ac-

cidental coincidences is simultaneously estimated through the 

use of a delayed gate of comparable width. 

In fast mode, the ratio between the interrogating source 

and the induced fissions neutrons may reach 100:1 (with stan-

dard AmLi interrogation source), which results in an extremely 

small signal-to-noise ratio for such a large coincidence gate. In 

this condition, there are no satisfactory solutions using 3He-

based systems that can provide acceptable uncertainties (2 

percent) in reasonable acquisition times (~20 minutes).

Detectors that utilize fast neutron scattering, such as Liq-

uid Scintillator detectors, have a clear advantage in neutron co-

incidence measurements. For these detectors, the coincidence 

gate can be significantly shorter — on the order of tens of ns 

(i.e., 1,000 times less than for 3He-based detectors) due to the 

immediate detection of the un-thermalized fission neutrons. 

Thus the number of accidental coincidences is dramatically re-

duced. Another benefit in using this type of detector is that the 

energy information of the neutron before detection is preserved, 

which can then be used to distinguish neutrons from the inter-

rogation source and neutrons from induced fission.

While both the very short coincidence gate and the mea-

sured energy of the detected neutron will considerably in-

crease the signal-to-noise ratio, and thus improve the system 

performance, fast neutron detectors present other challenges 

which need to be studied and minimized. Given an array of 

fast neutron detectors, the primary issues become (i) the high 

gamma ray sensitivity, and (ii) detector “cross talk.” This paper 

reviews the performance of a prototype neutron coincidence 

counter system based on liquid scintillator fast neutron detec-

tors, and the techniques used to develop optimal settings for 

gamma ray and cross talk rejection.

Figure 1. Fission cross-sections of 235U and 239Pu versus Cd and Gd 
neutron absorption cross-sections

Figure 2. Prototype fast neutron coincidence collar. Not shown is the 
polyethylene door, which contains the AmLi interrogation source.
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System Architecture
The current prototype consists of twelve cubic liquid scintillator 

(VS-1105-21 with EJ309 scintillant) cells (10 cm on a side) that 

are grouped into three slabs of four cells each (Figure 2). 

The design is such that the cavity can be adjusted to ac-

commodate different types of fuel assemblies (PWR, VVER, and 

BWR). The collar is closed on the inactive side using a polyeth-

ylene door that contains the AmLi interrogation source. Some 

polyethylene is mounted around the detectors to optimize the 

assembly interrogation through a more homogenous moderation.

Pulse Shape Discrimination
Liquid scintillators are sensitive to both neutron and gamma 

ray events, and each type of interaction creates light pulses 

of different shapes due to the different interaction phenom-

ena. A Pulse shape discrimination (PSD) technique is used by 

the acquisition electronics to differentiate the detected neu-

trons from the detected gamma rays. The prototype system 

includes three 4-channel PSD units (also referred to as mixed 

field analyzers (MFAs)) that were developed through collabora-

tion with Hybrid Instruments, Ltd. (UK). The very fast electrical 

pulses that arise from each liquid scintillator’s photomultiplier 

tube (PMT) are processed in real-time, then discriminated and 

converted into TTL output signals. This processing is done 

independently for all twelve channels of the collar. Figure 3 

shows the four 4-channel MFAs developed by Hybrid Instru-

ments, Ltd.1 with support from the UK support program the 

fourth 4-channel unit was included as a spare.

The PSD algorithm implemented in the system is based 

on a comparison of the integrals of the PMT pulse amplitudes. 

The first integral is taken from the peak amplitude, and the sec-

ond integral is taken from the pulse amplitude 16 ns after the 

peak (Figure 4). PMT pulses that have long decay times are 

classified as “neutrons” by the MFA and result in a “neutron” 

TTL output pulse. All other PMT pulses are classified as “gam-

mas,” and result in a “gamma” TTL output pulse.

The TTL outputs of the PSD units (neutron or gamma ray 

pulses) are collected and sent to the data acquisition system 

whose key component is a National Instruments Industrial 

Controller (NI3110). The controller includes an FPGA-based 

data acquisition card and data acquisition analysis software de-

veloped by IAEA with LabVIEW. This data acquisition system 

and related software analysis implementation was designed 

and developed at the IAEA.

Figure 5 shows the typical PSD scatter plot for a califor-

nium fission source. The events above the PSD discrimination 

line are considered as gamma rays and below as neutrons. 

To optimize the PSD discrimination line position, a study 

using a neutron source (252Cf) and a pure gamma ray source 

(137Cs) was performed. The results for detector efficiency and 

gamma ray rejection rate (GRR) for different settings of the 

PSD line are shown in Figure 6.

Figure 3. Four 4-channel mixed-field analyzers developed by Hybrid 
Instruments Ltd.

Figure 4. Neutron and gamma PMT pulse shape comparison for high 
energy gamma ray
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On the X axis, the gamma rejection rate is shown and de-

fined as 

The operational point is determined by shifting the discrim-

ination line to a position just before the efficiency curve rolls 

off due to a high false-neutron rate (gamma ray events classi-

fied as neutrons). The red point shown in Figure 6 represents 

a GRR of approximately 8x10-4. Here, the neutron detection ef-

ficiency is approximately 9.5 percent.

Crosstalk
In a system with twelve detectors that are placed near each 

other, the possibility that an incident neutron interacts in one 

cell, and then scatters into an adjacent cell where it interacts 

again, depositing sufficient energy in both is not negligible. This 

would result in a measured coincidence event. To reduce the 

probability of this kind of artificial coincidence event, known as 

“crosstalk,” three measures were taken:

1. The detectors were physically separated by introducing 

1cm of polyethylene between the cells to reduce the neu-

tron energy after the first scatter. 

2. An “anti-crosstalk filter” was implemented in the FPGA 

firmware of the acquisition system using LabVIEW. After 

the first event is detected in a given cell the filter inhibits 

any events within the same clock (20 ns) on the two adja-

cent cells that share a full face. Figure 7 is a depiction of 

the anti-crosstalk (ACT) filter.

3. The energy threshold is set to reduce the probability of 

detecting the same neutron in the second event. The opti-

mization between this filter and the neutron efficiency has 

been done using a Monte Carlo simulation2 and validated 

in a field test.

The ACT has been tested while activating different por-

tions of the detector array (with adjacent or distant cells) and 

checking the consistency in the two configurations response 

(see Figure 8). Table 1 shows the test results. The test has 

been performed with an AmLi source in the door and a 252Cf in 

the cavity center.

Figure 5. A scatter plot for a long measurement taken from a 252Cf fission 
source. Each point corresponds to a single detection by one of the twelve 
PMTs. A three-point discrimination line has been defined, and any events 
located below the discrimination line (shown here in blue) are classified as 
“neutrons” by the MFA. All others are classified as “gammas”

Figure 6. Correlation between neutron efficiency and GRR for different 
PSD thresholds

Figure 7. Concept for the ACT filter. A neutron is detected in Cell 4. Cells 
2 and 3 are then inhibited to register events in the same time clock after 
the first event in cell 4.
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Table 1. Collar response as the function of ACT setting, for neutrons from 
AmLi (placed in the interrogation source position) and 252Cf (placed in the 
centre of the collar)

 AmLi ACT off Cf ACT off

Detectors Singles Doubles Singles Doubles

All 14710 162 1000181 8063

1,2,3,4,10,12 7539 63 50464 2034

1,4,9,12,5,8 7618 13 50273 1839

AmLi ACT on Cf ACT on

All 14773 56 98936 6419

1,2,3,4,10,12 7641 12 50315 1231

1,4,9,12,5,8 7577 17 50055 1693

Table 1 shows the successful implementation of the ACT 

algorithm by comparing the two different configurations shown 

in Figure 8. Additionally, it shows how the source position plays 

an important role in the crosstalk effect. A 252Cf neutron, com-

ing from the cavity center, although more energetic than an 

AmLi neutron, does not create appreciable crosstalk. In fact, 

to hit a second cell, a direction change of approximately 90 

degrees is required; consequently the neutron loses enough 

energy to be under the detection threshold. The trajectory of 

AmLi source neutrons are different in that they arrive at an 

angle that allows them to interact with two adjacent detectors 

without much change in direction, and thus without much en-

ergy loss. The reduction in doubles for the Cf case is due to the 

ACT, which shuts down two adjacent cells then reducing the 

system efficiency for the second event. 

Even with the ACT in place, some accidental coincidences 

were measured. As discussed below, the combination of the 

ACT with a neutron energy threshold value of ~400 keV was 

able to reduce the cross talk contribution of the AmLi neutrons 

below 1 percent of the 235U doubles. 

Neutron Energy 
For thermal neutron detectors, the discrimination between 

interrogating neutrons and fission neutrons can only be per-

formed using time correlation measurements, since the energy 

information of the detected neutron has been lost during the 

moderation process. Although this time-correlation technique 

is still valid for fast neutron detectors, the preservation of 

the neutron energy information enables the use of an energy 

threshold to also differentiate between the two sources.

Figures 9 and 10 show the well-known energy distribu-

tions of AmLi and U fission neutrons, respectively. AmLi neu-

trons typically are in the energy range between 0.2 MeV and 

1.5 MeV, while fission neutrons typically are in the energy 

range between 0 and 8 MeV with a mean of about 1.2 MeV.

An appropriately high selection of the detection energy 

threshold can be chosen to reduce the AmLi contribution in 

the neutron total rate (compared to the fission neutron rate) to 

a negligible level.

Simulation results1 suggested the use of two operational 

threshold settings for further investigation:

1. 500 keV for coincidence counting (optimized to minimize the 

number of crosstalk correlations, even with the ACT enabled)

Figure 8. Different detector setups to test the ACT filter. Green indicates 
enabled detectors.

Figure 9. Neutron intensity (log) versus energy for an AmLi neutron 
source
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2. 1100 keV for singles counting (optimized for rejection of 

neutrons from AmLi, when ignoring time-correlations.) 

Field Tests with a VVER 440 Fresh Fuel 
Assembly
A detailed experimental campaign was performed in the 

Atominstitut (ATI) in Vienna to characterize the performance of 

the prototype collar using a 3.6 percent enriched VVER 440 fuel 

assembly segment owned by the IAEA. Figure 11 shows this 

VVER assembly segment being measured in the Fast Neutron 

Collar.

The measured 235U mass depends on the number of in-

duced fissions generated by the AmLi source neutrons (“cou-

pling”). It is important to correct the measurement for effects 

due to spontaneous fission from 238U, as well as background 

neutrons. Therefore, at each operational setting, two separate 

10-minute measurements were performed: 

1.  Passive detection measurement: neutron emission and 

detection from a fuel assembly with no interrogating 

source present. 

2.  Active interrogation detection measurement: using an 

AmLi source to induce fission. The AmLi source used had 

an emission rate of 5x104 n/s. 

These two measurements were repeated for two neutron 

measurement configurations: 

a)  Fast mode: with cadmium sleeves placed in front of the 

detectors to absorb neutrons below ~1.25 eV.

b)  Thermal mode: with the cadmium sleeves removed.

Each of these four measurements was performed for a dif-

ferent number of neutron energy thresholds, starting from the 

values suggested by the simulation. After an initial set of mea-

surements, three values were chosen for further investigation: 

• 263 keV – the lowest possible threshold (used for maxi-

mizing the S/N for doubles) 

• 408 keV – optimized threshold (when combined with ACT, 

minimizes crosstalk) 

• 1306 keV – used for singles 

Figure 10. Fission neutron intensity (log) versus energy for an 235U 
thermal fission

Figure 11. VVER mock-up used for the field test
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Results
The most interesting results for this campaign are summarized 

in Table 2.

Table 2. Subset of the VVER field test results (10 minutes measurement)

Doubles Fast Mode

Threshold Energy (keV) Doubles net Err doubles

263 1388 3.24 percent

408 1252 3.33 percent

Singles- Fast Mode

Threshold Energy (keV) Singles net Err singles 

1306 7673 2.24 percent

Table 2 shows that in fast mode the system is able to 

reach, for this assembly segment with 3.6 percent enrichment, 

a 2 percent statistical error in approximately 20 minutes (scaled 

from the 10 minutes measurement) using doubles coincidence.

Counting Singles in fast mode, although producing six 

times higher statistics for net counts, does not improve sig-

nificantly in terms of overall statistical error, as it carries the 

propagated error of a large quantity of singles coming from the 

passive measurement. Moreover, the AmLi contribution to the 

measured signal was estimated to be approximately 7 percent, 

reflecting a threshold that is still too low for satisfactory separa-

tion. Higher threshold settings would reduce the efficiency too 

much to be considered competitive.

As such, doubles counting is the preferred method of mea-

surement for this configuration, as doubles are more immune to 

neutron misclassification than singles since the probability of mis-

classification for two consequent events goes with the square

 GRRdoubles = GRRsingles
2.

Benchmark Against Conventional 3He 
UNCL
The liquid scintillator neutron coincidence counting (LS-NCC) 

system participated in benchmark exercises during the second 
3He Alternatives Workshop in the EC-JRC-ITU Ispra in October 

2014.3

The test focused on comparing the Fast Neutron Collar’s 

performance against the conventional 3He-based UNCL collar, 

in particular on measurements of efficiency (singles and dou-

bles) and doubles counting statistics in different signal-to-noise 

conditions. 

The passive mode was simulated using a 252Cf source of 

7050 n/s. Two active modes (thermal and fast) were simulated 

using combined AmLi/252Cf sources with ratios of 10:1 and 

100:1. 

The Fast Neutron Collar was operated with an energy 

threshold at 408 keV.

Table 3 shows the difference in performance between the 

two systems. While the two systems have very similar neutron 

detection efficiencies, the fast neutron collar produces more 

precise measurements in all conditions due to the negligible 

accidental rates. 

Table 3. Comparison of results for a 3He-based UNCL and the LS-NCC for 
10 minutes acquisition time

3He- UNCL* LS-NCC

Singles Efficiency [ percent] 10.01 9.54

Doubles Efficiency [ percent] 3.23 3.43

GRR < 1.0x10-8 8.4x104

Dbls passive thermal mode 61.55±0.87 percent 67.30±0.50 percent

Dbls active thermal mode 64.78±2.05 percent 68.98±0.49 percent

Dbls active fast mode 4.07±9.77 percent 4.77±1.87 percent

* Results are not corrected for dead-time

Conclusion
The prototype liquid scintillator collar has been demonstrated 

to meet the performance goals (2 percent statistical uncertain-

ties) within the target acquisition time (20 minutes) when op-

erating in “fast mode.” It has also been demonstrated that the 

very short gate time in coincidence counting reduces the ac-

cidental rates to a negligible level and therefore, the associated 

statistical uncertainties. The inherent gamma ray sensitivity of 

liquid scintillators is kept under control with the use of coinci-

dence counting. Possible crosstalk effects have been studied 

and methods to mitigate this issue, which involve hardware 

and software configurations, have been developed. 

The use of singles for 235U fast assay has been tested, and 

shown to not dramatically improve the statistical precision of 

the U mass measurements over coincidence counting meth-

ods. Potential improvements in this direction include design 

changes to explore additional moderation of the interrogating 

source or changing the collar geometry.
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Abstract
In order for the Department of Safeguards to provide credible 

assurance that states are honoring their safeguards obligations, 

quantitative conclusions regarding states’ nuclear material in-

ventories and activities are needed. The statistical analysis used 

to reach these conclusions requires that each measurement 

method undergo uncertainty quantification (UQ). This paper de-

scribes current work aimed at improved understanding of uncer-

tainty sources and provides two example UQ applications, one 

using a top-down approach and the other using a bottom-up ap-

proach. We explore possible improvement of current top-down 

analysis, through a new calculation that accommodates multi-

plicative error models to compare operator and inspector data. 

To demonstrate the benefit of bottom-up analysis, we examine 

individual uncertainty components associated with uranium neu-

tron coincidence collar (UNCL) measurements. Improving safe-

guards effectiveness is an on-going challenge and incorporating 

predicted uncertainties from bottom-up analyses into top-down 

verification measurement performance evaluations is a useful 

path forward to comprehensive UQ. 

1. Introduction and Background
To monitor for possible data falsification by the operator that 

could mask diversion, paired (operator, inspector) verifica-

tion measurements are assessed by using one-item-at-a-time 

testing to detect significant differences, and also by using an 

overall difference of the operator-inspector values (the “D (dif-

ference) statistic”) to detect possible overall trends. Such an 

assessment depends on the assumed measurement error 

model and associated uncertainty components, so it is im-

portant to perform effective uncertainty quantification (UQ). 

These paired data are declarations usually based on measure-

ments by the operator, often using destructive assay (DA), and 

measurements by the inspector, often using non-destructive 

assay (NDA).  Statistical tests are applied one-item-at-a-time, 

and also to assess for possible trends by computing an overall 

difference of the operator-inspector values using the D statis-

tic, commonly defined as 
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Both the D statistic and the one-item-at-a-time tests rely on estimates of operator and inspector 
measurement uncertainties that are based on top-down UQ from previous inspection periods. 
     Material balance evaluations (MBE) also rely on estimates of measurement uncertainties, for every 
material balance area (MBA), material type, stratum, and measurement system used to verify a state’s 
declaration. The same paired (operator, inspector) data is used for top-down UQ, applying a method 
known as the Grubb's estimator, or variations of it, to estimate uncertainty components. In contrast, 
bottom-up UQ propagates errors in all key steps of the assay to predict the uncertainty in the estimated 
nuclear material mass; this error propagation is similar to that used in the guide to expression of 
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of uncertainty in measurements (GUM, 2008). One step to im-

prove UQ is to improve the bottom-up UQ so that it is in better 

agreement with top-down UQ.

This paper is organized into two main parts: Section 2 de-

scribes top-down UQ and gives new results for multiplicative 

error models. Section 3 describes bottom-up UQ using the 

UNCL case study. 

2. Improving Top-Down UQ Applied to 
Paired (Operator, Inspector) Data
2.1 Measurement Error Models
The measurement error model must account for variation with-

in and between groups, where a group is, for example, a cali-

bration or inspection period. A typical model for additive errors 

for the inspector (I) (and similarly for the operator O) is

 Iij = μij + SIi + RIij (1)

where Iij is the inspector’s measured value of item j (from 1 to 

n) in group i (from 1 to g), mij is the true but unknown value 

of item j from group i, 
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where  is the inspector’s measured value of item j (from 1 to n) in group i (from 1 to g),  is the true 

but unknown value of item j from group i,  is a random error of item j from group i, 
 is a short-term systematic error in group i.  

     The measurement error model used for safeguards sets the stage for applying an analysis of variance 
(ANOVA) with random effects (Miller, 1998; Norman, 2014). Neither  nor  are observable. 

However, for various types of observed data, we can estimate the variances  and  . The variance of 

 is given by , where the item variability  is the variance of the random 

variable  (  is the true value of item j in group i, so  the “item variance”). If the errors tend to 

scale with the true value, then a typical model for multiplicative errors is 
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value of , 2 2 2( ) ( )SIij ij RII μ δ δ= + .  Provided the magnitude of Iij IijS R+ is approximately 0.2 or less 

(equivalently, the relative standard deviation of Iij IijS R+ should be approximately 8% or less) , one could 

convert Eq. (2) to an additive model by taking logarithms, using the approximation log(1 )x x+ ≈  for 

  0.20x ≤ . However, there are many situations for which the log transform will not be sufficiently 

accurate, so Section 2.2 describes recently-developed options to accommodate multiplicative models 
rather than using approximations based on the logarithm transform. 
 
2.2 Grubb’s Estimator and Variations for Paired (Operator, Inspector) Data 
     Readers familiar with random-effects ANOVA (Miller, 1998) might anticipate having repeated 
measurements on some of the items in order to estimate  . However, the IAEA has access to far more 
paired (O,I) data for which repeated measurements of the same item are not available. Therefore, this 
section first describes the Grubb's estimator (intended for such paired data) for additive measurement 
error models. Next, it describes new variations of the Grubb's estimator to accommodate multiplicative 
error models and/or prior information regarding the relative sizes of the true variances. Grubb’s estimator 
was developed for the situation in which more than one measurement method is applied to multiple test 
items, but there is no replication of measurements by any of the methods. This is the typical situation in 
paired (O,I) data. We note here that the phrase “top-down” UQ is used among analytical chemists to refer 
to a particular type of reproducibility study that includes multiple laboratories over time measuring the 
same or very similar items (ISO 21748, 2010). This paper is using the phrase “top-down” more loosely, to 
refer to any type of empirical assessment of measurement error variances, such as in analysis of paired 
operator, inspector data. We also note here that the variance  of the random error variance component 

  includes “item-specific” bias (see Section 3 and Burr and Knepper, 2005), which would not be 
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3.1 Description of UNCL
The UNCL uses an active neutron source to induce fission in 

the 235U in fresh fuel assemblies (Menlove et al., 1990). Neu-

tron coincidence counting is used to measure the “reals,” or 

neutron coincident (“doubles”) rate, D (attributable to fission 

events), which can then be used to determine the linear densi-

ty of 235U in a fuel assembly (g-235U/cm) from calibration param-

eters, a1 and a2. The equation used to convert the measured D 

to Y (grams 235U per cm) is

linear density of 235U in a fuel assembly (g-235U/cm) from calibration parameters, a1 and a2. The equation 
used to convert the measured D to Y (grams 235U per cm) is 
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where 1a  and 2a  are calibration parameters, and k = k0k1k2k3k4k5 is a product of correction factors that 

adjust D (D = X in Eq. (2)) to  item-, detector-, and source-specific conditions in the calibration (Menlove 
et al., 1990). Therefore, Eq. (5) is a special case of GUM’s Eq. (1), where the two calibration parameters 
a1 and a2 and the 6 correction factors k0, k1, k2, k3, k4, and k5 are among the X’s in Eq. (1). The GUM does 
not fully treat multi-parameter calibration uncertainties, so there are open issues in applying GUM’s Eq. 
(1) even to this relatively straightforward calibration problem (Elster, 2014). Nevertheless, it provides a 
practical basis to support discussion of the current practice for NDA and to describe a roadmap for more 
comprehensive UQ for NDA. 
     A schematic of a type-II UNCL with its three coupling factors is shown in Figure 1. The three 
coupling factors in the UNCL system are: (1) Sample-to-detector coupling (neutron doubles from fission 
events, Reals/fission); (2) Source-to-sample coupling (fissions induced by AmLi neutron source 
(fission/source-neutron), and (3) Source-to-detector coupling (singles counts from source measured in 
detector that degrade the doubles (reals) counting statistics (D = (D+A) - A,

 = ( )2G, where D = “reals” (actual coincidences), A = Accidentals, = accidentals rate,

 = singles neutron counting rate, G = gate width for doubles coincidences)).  So coupling-3 increases the 

A term, and, because ˆ  2 ,D D Aσ = +  coupling-3 is a source of uncertainty. Uncertainty evaluation 

suggests that detector design should maximize (1) and (2), and minimize (3).  
 
 

 
 
Figure 1. A type-II UNCL with the AmLi source (red), He-3 detector tubes (yellow), polyethylene body 
(white) and a 15x15 PWR assembly (blue). There are three coupling factors in the UNCL system shown: 

(1) Sample-to-detector coupling, (2) Source-to-sample coupling, and (3) Source-to-detector coupling. 
 
 
3.2 Description of UNCL Calibration and the 6 Correction Factors k0, k1, k2, k3, k4, and k5 
     Menlove et al. (1990) introduced correction factors for standard PWR and BWR fuel types to adjust 
the measured reals count rate to the corresponding reals count rates observed in the calibration condition 

(5)

where a1 and a2 are calibration parameters, and k = k0k1k2k3k4k5 

is a product of correction factors that adjust D (D = X in Equa-

tion 2) to  item-, detector-, and source-specific conditions in 

the calibration (Menlove et al., 1990). Therefore, Equation 5 is 

a special case of GUM’s Equation 1, where the two calibra-

tion parameters a1 and a2 and the six correction factors k0, k1, 

k2, k3, k4, and k5 are among the X’s in Equation 1. The GUM 

does not fully treat multi-parameter calibration uncertainties, 

so there are open issues in applying GUM’s Equation 1 even to 

this relatively straightforward calibration problem (Elster, 2014). 

Nevertheless, it provides a practical basis to support discussion 

of the current practice for NDA and to describe a roadmap for 

more comprehensive UQ for NDA.

A schematic of a type-II UNCL with its three coupling fac-

tors is shown in Figure 1. The three coupling factors in the 

UNCL system are: (1) Sample-to-detector coupling (neutron 

doubles from fission events, reals/fission); (2) Source-to-sam-

ple coupling (fissions induced by AmLi neutron source (fission/

source-neutron), and (3) Source-to-detector coupling (singles 

counts from source measured in detector that degrade the 

doubles (reals) counting statistics (D = (D+A) - A, A
•

 = (S
• 

)2G, 

where D = “reals” (actual coincidences), A = Accidentals, A
• 

= accidentals rate, S
•  

= singles neutron counting rate, G = gate 

width for doubles coincidences)). So coupling-3 increases the 

A term, and, because 

linear density of 235U in a fuel assembly (g-235U/cm) from calibration parameters, a1 and a2. The equation 
used to convert the measured D to Y (grams 235U per cm) is 
 

                                              
1 2

kXY
a a kX

=
−

                                                              (5), 

where 1a  and 2a  are calibration parameters, and k = k0k1k2k3k4k5 is a product of correction factors that 

adjust D (D = X in Eq. (2)) to  item-, detector-, and source-specific conditions in the calibration (Menlove 
et al., 1990). Therefore, Eq. (5) is a special case of GUM’s Eq. (1), where the two calibration parameters 
a1 and a2 and the 6 correction factors k0, k1, k2, k3, k4, and k5 are among the X’s in Eq. (1). The GUM does 
not fully treat multi-parameter calibration uncertainties, so there are open issues in applying GUM’s Eq. 
(1) even to this relatively straightforward calibration problem (Elster, 2014). Nevertheless, it provides a 
practical basis to support discussion of the current practice for NDA and to describe a roadmap for more 
comprehensive UQ for NDA. 
     A schematic of a type-II UNCL with its three coupling factors is shown in Figure 1. The three 
coupling factors in the UNCL system are: (1) Sample-to-detector coupling (neutron doubles from fission 
events, Reals/fission); (2) Source-to-sample coupling (fissions induced by AmLi neutron source 
(fission/source-neutron), and (3) Source-to-detector coupling (singles counts from source measured in 
detector that degrade the doubles (reals) counting statistics (D = (D+A) - A,

 = ( )2G, where D = “reals” (actual coincidences), A = Accidentals, = accidentals rate,

 = singles neutron counting rate, G = gate width for doubles coincidences)).  So coupling-3 increases the 

A term, and, because ˆ  2 ,D D Aσ = +  coupling-3 is a source of uncertainty. Uncertainty evaluation 

suggests that detector design should maximize (1) and (2), and minimize (3).  
 
 

 
 
Figure 1. A type-II UNCL with the AmLi source (red), He-3 detector tubes (yellow), polyethylene body 
(white) and a 15x15 PWR assembly (blue). There are three coupling factors in the UNCL system shown: 

(1) Sample-to-detector coupling, (2) Source-to-sample coupling, and (3) Source-to-detector coupling. 
 
 
3.2 Description of UNCL Calibration and the 6 Correction Factors k0, k1, k2, k3, k4, and k5 
     Menlove et al. (1990) introduced correction factors for standard PWR and BWR fuel types to adjust 
the measured reals count rate to the corresponding reals count rates observed in the calibration condition 

 coupling-3 is a source 

of uncertainty. Uncertainty evaluation suggests that detector 

design should maximize (1) and (2), and minimize (3). 

3.2 Description of UNCL Calibration and the Six 
Correction Factors k0, k1, k2, k3, k4, and k5

Menlove et al. (1990) introduced correction factors for standard 

PWR and BWR fuel types to adjust the measured reals count 

rate to the corresponding reals count rates observed in the 

calibration condition for a particular a1, a2 coefficient pair.  Since 

that original reporting, coefficient pairs have been determined 

for WWER-440 and WWER-1000 fuel types (Peerani 2004).

The term k0 accounts for uncertainty in the true Am/

Li source strength, which is approximately 3.7 percent RSD 

based on recent IAEA estimates using 109 sources with well-

known intensity ratios: 3.10 percent arises from uncertainty in 

the absolute source intensity of source MRC95 in a 2014 cali-

bration and 1.95 percent arises from variation among the 109 

published source intensity values, and 2 2.0366 .031 .0195= + . 

Future work will partition the 3.7 percent RSD in k0 into random 

and systematic components. The term k1 accounts for uncer-

tainty due to electronic drift (considered negligible with mod-

ern electronics, so k1=1). The term k2 accounts for uncertainty 

due to differences in detector efficiencies (approximately 1.5 

percent RSD). The term k3 accounts for the effects of burn-

able poisons, and k3 depends on how many Gadolinium (Gd) 

rods are in the assembly, plus there is a poison pin position-

dependency that leads to an item-specific bias that is not yet 
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and the measurement case. It is estimated by extrapolation 

from the calibration items to items having higher U loadings 

linear density of 235U in a fuel assembly (g-235U/cm) from calibration parameters, a1 and a2. The equation 
used to convert the measured D to Y (grams 235U per cm) is 
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where 1a  and 2a  are calibration parameters, and k = k0k1k2k3k4k5 is a product of correction factors that 

adjust D (D = X in Eq. (2)) to  item-, detector-, and source-specific conditions in the calibration (Menlove 
et al., 1990). Therefore, Eq. (5) is a special case of GUM’s Eq. (1), where the two calibration parameters 
a1 and a2 and the 6 correction factors k0, k1, k2, k3, k4, and k5 are among the X’s in Eq. (1). The GUM does 
not fully treat multi-parameter calibration uncertainties, so there are open issues in applying GUM’s Eq. 
(1) even to this relatively straightforward calibration problem (Elster, 2014). Nevertheless, it provides a 
practical basis to support discussion of the current practice for NDA and to describe a roadmap for more 
comprehensive UQ for NDA. 
     A schematic of a type-II UNCL with its three coupling factors is shown in Figure 1. The three 
coupling factors in the UNCL system are: (1) Sample-to-detector coupling (neutron doubles from fission 
events, Reals/fission); (2) Source-to-sample coupling (fissions induced by AmLi neutron source 
(fission/source-neutron), and (3) Source-to-detector coupling (singles counts from source measured in 
detector that degrade the doubles (reals) counting statistics (D = (D+A) - A,

 = ( )2G, where D = “reals” (actual coincidences), A = Accidentals, = accidentals rate,

 = singles neutron counting rate, G = gate width for doubles coincidences)).  So coupling-3 increases the 

A term, and, because ˆ  2 ,D D Aσ = +  coupling-3 is a source of uncertainty. Uncertainty evaluation 

suggests that detector design should maximize (1) and (2), and minimize (3).  
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in modern assemblies (15x15 PWR versus 17x17 PWR). The 

term k4 interacts with k3 and adds to the Gd-correction bias. The 

term k5 accounts for all other effects (e.g. spacers, bagged as-

semblies), but it is only occasionally used and should contribute 

only negligible uncertainty.

The k-factors allow for the use of the same a1 and a2 values 

over a wide range of measurement cases and different UNCL 

detector systems.  The calibration factors, a1 and a2, and the k-

factors aid in the identification of the error sources in the UNCL 

measurement and calibration. However, there is evidence of 

additional error sources (see Section 3.5) that are beyond our 

scope here.

3.3 Evidence from Top-Down UQ that UQ for 
UNCL Needs Improvement
Figure 2 shows that there are large relative operator-inspector 

differences (OID) in UNCL measurements across many MBAs 

and fuel assemblies. The standard deviation of the relative 

OIDs in Figure 2 is 8.8%, which is much larger than the RSD 

of the inspector’s repeated measurements of the same item 

(approximately 1.5% in recent years). Therefore, there is evi-

dence of item-specific bias (Burr and Knepper, 2005) and there 

is an opportunity for improving measurement performance that 

could be attained through improved UQ. Figure 3 plots the es-

timated relative error standard deviation 

(
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RMD is trending upward in recent years toward 15%, which is 

larger than desired. This is an example of when a bottom-up 

analysis can assist with the determination of which sources of 

uncertainty contributed to the degraded measurement quality.

3.4 Roadmap for More Complete UQ for UNCL
There are two approaches to convert the corrected measured 

coincidence doubles to mass: use k-factors to adjust the origi-

nal calibrations to the measurement condition, or calibrate the 

system by Monte Carlo methods for a particular fuel design.  

Both approaches are in use at the IAEA, and both approaches 

require a better understanding of the error sources in some of 

the k factors. Plus, modern fuel designs often require extrapo-

lation beyond the original calibration uranium loadings or have 

more complex designs that cannot be accommodated by the 

use of the k-factor formulations.  In addition, the IAEA requires 

calibration for fuel designs beyond the simple PWR and BWR 

cases addressed in the original calibration (Menlove 1990), and, 

it is not practical to build a representative library of reference 

pins/assemblies to address the complexity of modern fuel de-

signs. Better bottom-up UQ offers the possibility of implemen-

tation of either approach.

 
 

Figure 2. Percent OID versus year for many MBAs combined. 
 
 

 
Figure 3.  Percent RSD (a) and percent RMD (b) versus year for an example MBA.  The dashed lines 

above and below each point denote approximate 95% confidence values. 
 
 
 
3.4 Roadmap for More Complete UQ for UNCL 
     There are two approaches to convert the corrected measured coincidence doubles to mass: use k-
factors to adjust the original calibrations to the measurement condition, or calibrate the system by Monte 
Carlo methods for a particular fuel design.  Both approaches are in use at the IAEA, and both approaches 
require a better understanding of the error sources in some of the k factors. Plus, modern fuel designs 
often require extrapolation beyond the original calibration uranium loadings or have more complex 
designs that cannot be accommodated by the use of the k-factor formulations.  In addition, the IAEA 
requires calibration for fuel designs beyond the simple PWR and BWR cases addressed in the original 
calibration (Menlove 1990), and, it is not practical to build a representative library of reference 

 
 

Figure 2. Percent OID versus year for many MBAs combined. 
 
 

 
Figure 3.  Percent RSD (a) and percent RMD (b) versus year for an example MBA.  The dashed lines 

above and below each point denote approximate 95% confidence values. 
 
 
 
3.4 Roadmap for More Complete UQ for UNCL 
     There are two approaches to convert the corrected measured coincidence doubles to mass: use k-
factors to adjust the original calibrations to the measurement condition, or calibrate the system by Monte 
Carlo methods for a particular fuel design.  Both approaches are in use at the IAEA, and both approaches 
require a better understanding of the error sources in some of the k factors. Plus, modern fuel designs 
often require extrapolation beyond the original calibration uranium loadings or have more complex 
designs that cannot be accommodated by the use of the k-factor formulations.  In addition, the IAEA 
requires calibration for fuel designs beyond the simple PWR and BWR cases addressed in the original 
calibration (Menlove 1990), and, it is not practical to build a representative library of reference 

Figure 2. Percent OID versus year for many MBAs combined

Figure 3.  Percent RSD (a) and percent RMD (b) versus year for an 
example MBA.  The dashed lines above and below each point denote 
approximate 95% confidence values.



59Journal of Nuclear Materials Management 2016 Volume XLIV, No. 2

3.4.1 Path 1: Calibration Using Real Data and  
Measured Corrections

Los Alamos National Laboratory’s (LANL) original calibration 

(a1, a2) can be used with the appropriate k-factor values. These 

data were used to estimate a1 and a2, but were collected us-

ing lower 235U linear density values than are commonly used 

in modern designs.  In addition, the enrichment was uniform 

over the assembly, and the empirical Gd-poison correction em-

ployed lower poison densities than are currently in common 

use and assumed that the position of the poison rods in an 

assembly was not important. As a result of the conditions im-

posed by these issues, the range of application of the original 

calibration parameters is limited.  Because it is not practical to 

build an assembly mock-up akin to the original LANL approach 

that is more representative of modern design, the use of the 

Monte Carlo calibration approach is gaining acceptance in the 

safeguards community. Some aspects to consider for choosing 

Path 1 (not yet fully attempted) include:

• Requires k2 parameter and relative source intensity 

(source/sample and sample/detector coupling). The main-

tenance of detector cross-calibration terms has historically 

proven to be cumbersome.

• Requires use of original LANL calibration data of doubles 

rate versus 235U for range of enrichment.

• LANL used DU and LEU pins arranged in different configu-

rations to get relatively wide range of enrichment valid up 

to 3.2% 235U.

• Possible to do limited poison correction via a simple model.

• Estimated >5 percent total RMSE (random and system-

atic) for assemblies that are well modelled by the old cali-

bration data

3.4.2 Path 2: Calibration Using Synthetic Data

Monte Carlo methods can be used to simulate the neutron 

doubles counting rate for specific fuel designs.  It is possible to 

determine values of a1, a2, k2, k3 , and k4 by simulation, but this 

is rarely done.  It is more common to simulate the measured 

counting rate for a particular case or to determine a1 and a2 for 

predefined k-value cases (e.g., a particular fuel design including 

a defined poison condition).

To better understand the ability to reliably calibrate the 

UNCL system and apply a qualified error estimation to the 

calibration results, the IAEA simulated the original calibration 

cases presented by Menlove for the UNCL calibration for PWR 

and BWR fuels measured in thermal- and fast-mode with and 

without poison pins (twenty-seven PWR cases and thirty-four 

BWR cases).  All cases were simulated to have a doubles rate 

of within one standard deviation (1-a) of the originally-esti-

mated measurement uncertainty (1a~3.2 percent, including 

counting statistics variation and the source yield uncertainty). 

In this case the reference fuel assembly geometry and descrip-

tions of the standards were sufficient to confirm that the fuel 

assembly model represents the physical assembly with nearly 

negligible bias.  The single largest factor impacting the simula-

tion uncertainty was the selection of the energy spectrum of 

the simulated active-mode source (Beddingfield, 2015).

While modelling can produce case-specific values or gen-

erate calibration coefficients over a variety of 235U loadings, this 

approach is vulnerable to “sample definition bias,” where the 

actual fuel assemblies to be verified are not accurately repre-

sented in the model.  Despite this potential vulnerability, we 

have shown that modelling can produce a useful calibration 

curve with qualified uncertainty values for use with real data 

that has equal or better performance than could be obtained 

from representative standards. Therefore, a Monte Carlo mod-

elling technique is the preferred path (especially when extrapo-

lated beyond the 3.2 percent enrichment in the original LANL 

calibration and/or when Gd poison and 5.5 percent enriched 

pins are present). Some aspects to consider for choosing Path 

2 include:

• Absolute source intensity and neutron energy spectrum 

is needed to adjust for AmLi source strength and enable 

precision modelling. 

• Requires design information of assembly (sometimes 

proprietary issues).

• Possible to adjust for poisons, gradients in enrichment, 

different fuel zones, etc.

• The IAEA has produced historically good modelling results.

3.4.3 Numerical Example of Error Propagation for 
the UNCL

We reanalysed nine pairs of (D, 235U) from Table VII for PWRs 

from Menlove et al. (1990), fitting Equation 2 with approximate-

ly 2 percent RSD. Following Path 2 to illustrate, we then applied 

noise to the factor k, where k = k0k1k2k3k4k5, to account for the 

departure from the calibration conditions described in Section 

3.2. Figure 4 gives example RSD values for the 9 (D, 235U) pairs 

in 105 simulations using the software package R (2012). In each 

simulation, 6 of the 9 (D, 235U) pairs were randomly selected to 

calibrate, and the other 3 (D, 235U) pairs were used to test. 
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Varying amounts of random error in k were applied, rang-

ing from 1 percent to 10 percent RSD, which represents the 

aggregate effect of errors in each of k0-k5. Recall the current 

estimate of the RSD in k1 is 3.7 percent and in k2 is 1.5 percent. 

There is random counting error in the doubles rate D, which is 

simple to quantify. There should be negligible uncertainty in k0 

and k5. However, the factors k3 and k4 interact in complicated 

ways that are not yet fully understood. It is also not yet fully 

understood how to partition the errors in the k1,k2, k3, and k4 

into random and systematic errors (see cases 1-3 in the next 

paragraph). Also, there are options to accommodate errors in 

predictors (the predictor is kD in Equation 4) that are under in-

vestigation. 

Figure 4 plots the percent relative root mean squared es-

timation error in estimating y for a range of RSD values in the 

predictor kD (from near 0 percent to 10 percent) for 3 cases. 

Case 1 assumes that all errors in kD are random. Case 2 as-

sumes an equal partitioning of total error into random and sys-

tematic. Case 3 assumes all errors in kD are systematic. Figure 

4 includes the effect of error in calibration constants 1a  and 

2a  as well as random and/or systematic errors in kD.

3.5 Discussion
Assay challenges associated with new fuel and poison loadings 

have motivated synthetic calibration of the UNCL with Monte 

Carlo codes and this has led to a closer analysis of UNCL un-

certainty components. The k factors k0, k1, k2, k3, k4, and k5 have 

been used for UNCL calibration and UQ for many years. How-

ever, there are recent assay challenges associated with new 

fuel and poison loadings, so the errors in the individual k factors 

are under investigation. Also, there are several other effects 

that are not captured by the k factors that MCNP modelling 

suggests are important, including:

• There is a bias associated with sample position in the de-

tector, particularly for BWR measurements.

• The Gd poison correction should be modified to account 

for varying enrichment of the pins.

• Beddingfield (2015) shows that the AmLi sources exhibit 

radial anisotropy in source strength (up to 1 percent varia-

tion in the apparent source strength as it is rotated in its 

holder), which can be compensated for using a normal-

ization feature in the UNCL software, but if an inspector 

rotates or temporarily removes the source between the 

time of normalization and the assay, a bias can result when 

inspectors recalibrate the UNCL in the field.

• The UNCL assay is sensitive to the positioning of the fuel 

assembly inside the UNCL and care needs to be taken to 

keep the fuel assembly in the same position as was used 

during calibration. Other simple sources of uncertainty 

include the assay counting time and differences in back-

ground between the calibration and the assay.

Inspector training for NDA includes top-down UNCL re-

sults such as those in Figures 2 and 3. The IAEA training sec-

tion believes it is important for inspectors to understand the 

assembly design and INCC input requirements. Incorrect INCC 

declaration input, which might be thought of as a “human fac-

tor,” is thought to be among the largest contributors to the 

observed UNCL uncertainty. This is an additional error source 

that is not included in the k factors, and should not be, because 

with better training, inspectors will provide correct INCC input.

4. Summary
Through the combined efforts and observations of inspectors, 

statistical analysts, NDA experts, and training officers, we have 

a better understanding of how more comprehensive UQ can be 

applied to improve statistical analyses conducted by the IAEA. 

Using examples that describe the challenges associated with 

quantifying and identifying sources of uncertainty, we have 

described on-going efforts to improve the currently used top-

down analysis and have also incorporated a bottom-up assess-

ment of individual uncertainty components. 
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safeguards.  Recent work extends top-down UQ to accommodate multiplicative error models and known 
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By exploring uncertainty components from both top-down 

and bottom-up approaches, we can see how promoting com-

prehensive UQ can reduce measurement uncertainty and in 

turn improve safeguards. Recent work extends top-down UQ 

to accommodate multiplicative error models and known con-

straints on the true measurement error variances. Other recent 

work on bottom-up UQ was illustrated with the UNCL case 

study, where better understanding of uncertainty components 

of the adjustment factors (the ks in Section 3.2) is a first step 

toward  quantifying how to reduce uncertainty in current UNCL 

measurements on new types of fresh fuel assemblies.

Finally, one tends to “believe” the result of top-down UQ 

more when it is in conflict with bottom-up UQ; however, the 

additive model in Equation 1 (and similarly, the multiplicative 

model in Equation 2) assumes, SIi~N(0,s2
SI )with s2

SI constant 

over inspection periods, which is a strong assumption that is 

not always true; so top-down UQ also requires careful scrutiny.
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Abstract
This contribution proposes a shockwave dispersion method for 

sample preparation in safeguards analytical practice. It com-

pares this method to conventional sampling techniques of en-

vironmental swipes and uses a range of statistical methods to 

evaluate the dispersion quality of seven procedures. A major 

part of this paper involves image analysis of optical and scan-

ning electron microscope (SEM) images using Fiji software 

and plugins, as well as the handling of large data sets that are 

typical of modern imaging systems. Images were acquired by a 

Zeiss Z2m optical microscope and a Tescan Lyra3 SEM.

Introduction
Microprobe beams have a wide spectrum of applications 

that range from industrial applications (such as welding, cut-

ting, and manufacturing) to scientific research (geology, biol-

ogy, biochemistry, physics, medicine, and forensics). These 

techniques have established themselves in the field of single 

particle analysis whereby micrometer-sized artifacts are inves-

tigated for the purpose of extracting morphological, chemical, 

isotopic, and provenance information.

Particularly, particle analysis for safeguards applies a range 

of techniques to verify the completeness of declarations of nu-

clear activities in both research and production facilities. These 

particles are collected on pieces of cotton cloth (TexWipe®, 

TX304) by swiping surfaces of safeguard interest. Specifically, 

these particles may provide evidence of undeclared, singular 

enrichment events or treaty-prohibited research endeavors.

Microprobe Techniques and the Need for  
Dispersion
Particles from swipes vary typically in size from sub-micron to 

~100 µm in diameter with an average of about ~10µm (including 

particles of interest and matrix particles). Each particle carries 

a wealth of information, and for that reason it is vital to prevent 

mixing of chemical signatures of particles of interest and envi-

ronmental particles. Hence, to avoid collecting data from more 

than one particle at a time, it is necessary that the particles are 

separated physically and that the microprobe used is of compa-

rable size: smaller than the inter-particle distance. This param-

eter can be adjusted during sample preparation and includes a 

two-step process where the particles are extracted from the 

original swipe, redistributed onto a new substrate, and then 

characterized using microprobe techniques.  Some procedures 

will be biased toward a certain size range of particles, others 

will suffer from particle clustering and/or lack of reproducibility.

Once the particles have been extracted from the envi-

ronmental swipe and dispersed on a substrate, numerous mi-

croprobe techniques are used to investigate their properties. 

It is important to disperse the particles on a flat and smooth 

surface. Depending on the nature of the information wanted, 

the analyst will select a suitable micro-probing technique.  Fur-

thermore, to make use of the intrinsic capabilities of any micro-

analytical technique, the particles should be separated by at 

least the spatial resolution of the technique.

Quality Control of Dispersion Method
In this paper, the applicability of the shock wave disperser is 

investigated. The dispersion quality of this method was com-

pared to some features of merit of several existing methods 

by acquiring images of each dispersed sample and processing 

these using standard Fiji software and software plug-ins. 

The assessment of the quality of the dispersion in this pa-

per was performed using seven criteria listed below in order of 

increasing complexity: 

1. Visual assessment of the particle distribution using 3D sur-

face plots;

2. Line profiling across the diameter of the sample distribution;

3. Assessment of the circular azimuthal average of particle 

sizes;
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4. Assessment of particle density along evenly spread concen-

tric circles around the geometrical center of deposition;

5. Granulometry: a numerical sieving technique for grouping 

particles by size;

6. Uniformity and completeness of the particle size distribu-

tion (after collection and re-dispersion); and

7. Nearest neighbor distances.

Of the above criteria, the final two from the list are given 

precedence in evaluating the dispersion quality since obtaining 

an even distribution of particles is just as important as unbiased 

sampling. 

Standard Dispersion Methods 
Established dispersion methods include sprinkling of particles 

onto a substrate, mixing the sample with a liquid to create a 

suspension or slurry and pipetting this mixture onto a substrate, 

or filtration of particles from liquids or gases. Usually, collection 

substrates have an adhesive deposited on their surface to col-

lect and fix particles in place so that they do not re-disperse 

or bounce off the substrate. Currently, the inertial impaction 

method enjoys a preferential place as the particle extraction 

and dispersion of radioactive materials since the both opera-

tions can be performed within a glove bag. This minimizes the 

cross-contamination risks associated to sample preparation.

The Basics of a Shock Wave Disperser (Sod’s 
Tube) 1, 2, 3, 4

The physics of Sod Shock Tubes is well-known and has been used 

widely in industrial applications, investigations of shock wave be-

havior, and research of fluid dynamics and chaos theories.

Essentially, a Sod shock tube is a tube, with a diaphragm 

used to separate two sections of high and low pressure (Figure 

3). A shock wave is produced by the sudden removal of the dia-

phragm either by means of a small explosion (blast-driven) or 

Figure 1. An inertial impactor used at the IAEA Seibersdorf Clean 
Laboratory

Figure 3. Schematics of a basic shock tube
Figure 2. Deposition of particles using an inertial impactor for LG-SIMS 
samples at IAEA

Figure 4. (left) Basic dimensions of the shock tube with cylindrical sample 
holder 
Figure 5. (right) Basic dimensions of the shock tube with conic sample 
holder. Note sample holder slide (dark blue) which is fixable along the 
driven section and enables sampling at varying heights.

Figure 4 Figure 5
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by building up the pressure in either section, eventually caus-

ing the diaphragm to burst. After the explosion, a shock wave 

propagates through the length of the tube until a state of ther-

modynamic equilibrium is reached. The high-pressure section 

is typically called the driver section and the low-pressure region 

is called the driven section. 

A shock wave disperser based on the Sod’s tube operation 

was designed and built. The details of the disperser are be-

ing published elsewhere. Essentially, the design of the driven 

section was optimized to maximize the spreading of particles 

and to minimize the time needed for the system to stabilize, 

which had the further advantage of producing a compact dis-

persion device. The driver section was constructed to have a 

much smaller volume than that of the driven section (Figure 

4, 5, and 6) thus minimizing both the amount of sample and 

the presence of secondary shock waves. Furthermore, the 

collection substrate was coated with a thin layer of adhesive 

to reduce particle bouncing and resuspension by the reflected 

shock waves. 

Dispersion Simulation
A very basic simulation of the experimental setup was per-

formed using CAD-FEM1 software. The aim of this simulation 

was to assess the behavior of the ideal shock wave in the 

dispersion device. Movies of the simulation, conditions, and 

screenshots can be found in the online version of the CAD-

FEM paper.

Experimental Setup 
Sample Preparation
Images using reflected and transmitted light were acquired 

of substrates for particle collections, which were transparent 

(quartz disc, 1” x 1/16”, polished, Product No: 16001-1, Ted 

Pella Inc.). For the acquisition of SEM images, high-quality pol-

ished carbon discs of 25mm diameter were used (Hitachi, Ja-

pan). The SEM samples were coated with a thin layer of gold 

to minimize charging effects.

The samples were prepared in a clean room environment. 

The test material used was IAEA Soil 7 [6, pp. 1-2] [2, pp. 1-2]. 

The loading of reference material on the shock wave disperser, 

the sprinkled, pipetted and slurred samples was consistent ~ 

36 ± 1.5 µg (note that depending on the method, not all ma-

terial was deposited onto the sample collector). High-quality 

quartz substrates (the aforementioned discs from Ted Pella) 

were cleaned in an ultra-sonic bath and then depending on the 

method, were either allowed to dry and left clean or coated 

with clear varnish (Daler-Rowney Ltd, Bracknell, Berkshire, 

USA) or with a polyisobutylene (PIB)/nonane mixture (8mg/5ml 

PIB/nonane, diluted 20x) by means of a spin coater. The sub-

strate was left clean for making pipetted, slurry dispersion, and 

electrostatic impactor samples but was coated with varnish for 

shock wave disperser and sprinkling. For the inertial impactor it 

was coated with a PIB/nonane mixture. 

Image Acquisition
Modern imaging instruments are capable of producing large 

amounts of data. However, post-processing software and com-

puter processors are limited and in this paper, we propose a 

compromise as follows:

Optical Images

The optical microscope used was a Zeiss Z2m with its accom-

panying software to acquire high-quality large-area images of 

the whole sample with a resolution of ~1.3 µm/pixel (See Table 

2 for large area images). Up to 350 individual images taken at 

5x magnification (1.268 µm/pixel resolution) were used to build 

the fused whole sample image. The objective used was an EC 

Epiplan-Neofluar 5x/0.13 HD M27 with a working distance of 

15.1 mm. The images were stitched by the native AxioVision 

SE64 software using stage coordinates and an image overlap 

Figure 6. Prototype of shock wave disperser device
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of 10 percent. No filtering was conducted to enhance image 

features and the images were only corrected for background 

illumination during the acquisition (flat-field correction). Opti-

cal microscope images (1-1.2 GB) were acquired in less than 

fifteen minutes and were subsequently processed using a Fiji 

plug-in in less than an hour.

SEM Images

The SEM images were taken at TESCAN s.r.o., Brno, Czech 

Republic, on a Lyra3 FIB-SEM instrument and achieved ~0.3 

µm/pixel resolution. Stitched panoramas of individual images 

of a 1mm x 13mm stripe along the radius of each sample were 

prepared (200µm before the geometrical center and 300 µm 

over the edge, Figure 7). The final panoramas were 300-400 

MB in size and took two hours to obtain as well as about twen-

ty minutes to stitch offline. Individual images were of an area 

102,4 x 102,4 µm2 (512 x 512 pixels2). Samples of the inertial 

impactor and shock wave disperser (with both cone and cylin-

der heads) were taken for comparison.

Image Processing Software
The image processing software FIJI3 was used to obtain distri-

bution evaluations based on five image processing strategies 

extracted from data obtained by the following plugins: Interac-

tive 3D Surface Plot4, Plot Profile5, Azimuthal Average6, Con-

centric Circles7, Granulometry8, and Delaunay Voronoi9. The 

image size limit for processing by FIJI for all practical purposes 

was set at 1GB.

Results and Discussion
In the ideal case, one would measure the size of and count all 

particles from a sample to determine the particle size distribution. 

This may be impractical due to limitations of most image process-

ing software, reproducibility of dispersion method and the spatial 

resolution achievable by instruments. This contribution aims to 

achieve a compromise for evaluating the dispersion quality of vari-

ous sampling methods for a specific analytical purpose.

The discussion on the dispersion quality in the following 

sections will focus on resolving particles apart by using either 

optical or electron microscopy imaging techniques. The opti-

cal images, as was stated before, attained a resolution of 1.3 

µm/pixel whereas the electron images achieved a resolution of 

0.3 µm/pixel. These resolutions were deemed acceptable for 

the task at hand. However, due to the software memory con-

straints, panoramic SEM images of a maximum area of (1mm 

x 13 mm) were manageable and therefore used for small arte-

fact distribution assessment. On the other hand, whole sample 

light microscopy images could be processed and were used for 

large-scale particle distribution analysis. 

Large-scale particle distribution evaluations also contain 

optical images of shock wave disperser sample collection sub-

strates at different distances from the cone/cylinder head. This 

was done to investigate the device and compare the cone and 

cylinder sample holder heads’ dispersion patterns, as well as 

their evolution with respect to sampling distance. 

Large-Scale Particle Distribution Evaluation 
Surface Plots

2D and 3D plots were drawn by using the FIJI/ImageJ surface 

plot plug-in that translates grey level intensities of pixels to 2D 

and 3D color map surfaces.4 From the plots shown in Table 1, 

one distinguishes easily between trivial (pipetted, slurry disper-

sion, and sprinkled) and mechanical (electro-static impactor, in-

ertial impactor, and shock wave disperser) sample preparation 

techniques by presence of particle clusters. White areas are 

particle aggregates composed of clusters of indistinguishable 

particles.

Line Profiling

For each of the samples, a line profile across the diameter was 

taken as an initial assessment of particle dispersion.5 It was 

found that mechanical techniques produce symmetrical par-

ticle distributions around the center of the sample disc. Further 

statistical strategies needed to be considered since a single 

line of data is not sufficient for drawing definite conclusions. 

However, it was a good indicator of the inherent symmetric 

nature of mechanical dispersion techniques. For example, the 

shockwave disperser method produced Gaussian particle dis-

tributions across the diameter of the substrate. Both the cone 

Figure 7. Stripe areas of which SEM images were later taken. Left is a 
shock wave disperser sample, right is an inertial impactor sample.
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Table 1. 2-D and 3-D surface plots of all samples
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Table 1. (cont.) 2-D and 3-D surface plots of all samples
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Table 1. (cont.) 2-D and 3-D surface plots of all samples
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and cylinder driving sections behaved in a similar way, with the 

cone samples showing a faster decrease in axial particle load-

ing than the cylinder samples.

Azimuthal Average

The Azimuthal Average plug-in was used to assess the radial 

density distribution of particle dispersion.6 These results were 

an extension of the line profiling in the previous section and are 

displayed in the graph below as normalized integrated intensi-

ties vs. the angle at which the integration was done (-180˚ to 

180˚). The integration was performed along 100 angular bins 

(note that the line profiles were taken along diameters).  In the 

ideal case, for a perfectly even distribution of particles, the nor-

malized integrated intensity along a radius will be invariant of 

the angle.

Concentric Circles7

This plug-in was used in the assessment of particle density 

along the perimeter of 200 circles, spread evenly around the 

center of the collection substrate.7 It is a good tool for esti-

mating the homogeneity of the distribution method at differ-

ent distances from the geometrical center of the substrate. In 

our experiments, the shock wave disperser (at 17cm distance) 

with a cone head produced the most homogeneous distribu-

tion (flattest line in Figure 12).

Figure 8. Cylinder line profiles for varying sampling distances from top of shock wave device: at bottom (dark blue, sampling distance at 17cm); step 1 
(light blue, sampling distance at 12cm); step 2 (green, sampling distance at 7cm); and step 3 (orange, sampling distance at 2cm)

Figure 9. Cone line profiles for varying sampling distances from top of shock wave device: at bottom (dark blue, sampling distance at 17cm); step 1 (light 
blue, sampling distance at 12cm); step 2 (green, sampling distance at 7cm); and step 3 (orange, sampling distance at 2cm)
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Granulometry

A more rigorous statistical method in the form of a numeri-

cal sieving tool was used: granulometry.8 This virtual tool ex-

tracts size distribution from binary images by performing a 

series of morphological openings with a family of increasing 

particle groups and plots these into a granulometry function.10 

The function maps each structuring element to the number of 

image pixels removed during a single cycle. A local maximum 

in the pattern spectrum at a given particle size thus indicates 

the presence of many particles of that size. The granulometric 

function thus can be defined as:

G(k) = N(k + 1) – N(k)

Figure 10. Line profiles comparing the shock wave disperser (dark blue) axial loading to that of the inertial (light blue) and electrostatic impactors  
(light purple)

Figure 11. Normalized Integrated Intensity of particles along radii in: inertial impactor (red); electrostatic impactor (orange); shock wave disperser with 
cone head (green); and shock wave disperser with cylinder head (blue)
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Figure 12. Particle intensity along concentric circle at varying radii along sample: inertial impactor (red); electrostatic impactor (orange); shock wave 
disperser with cone head (green); and shock wave disperser with cylinder head (blue)

Figure 13. Granulometry function of several sampling methods. Local maxima show a preference of sampling particles of a certain size (inertial impactor 
method shows biggest preference towards 1-2 µm particles) or clusters. The shock wave disperser method with cone head shows the smallest 
preference towards particles of any given size and is thus the least biased (particles of all sizes evenly sampled). The sprinkling method has two peaks, 
the second of these due to particle clustering. 



72 Journal of Nuclear Materials Management 2016 Volume XLIV, No. 2

Where N(k) = 1 – Ps(k)/Ps(0) where Ps(k) is the pixel size distri-

bution function at a certain pixel size k and Ps(0) is just the pixel 

size distribution function of the original image10.

To investigate the particle distribution in the small scale, SEM 

images processed using Fiji in the following sequence: each im-

age was thresholded and particles identified from the background 

by their histogram intensity; the edges were detected after an 

erosion-dilation operation; and lastly, the images were segmented 

into either background or particle before any statistics was done. 

Note that the thresholding was done conservatively and some 

particles’ sizes could have been underestimated. Also, due to the 

sheer number of particles in a single sample (several tens of thou-

sands), a manual segmentation method is impractical and there-

fore automatic processes were used (FIJI autothresholding).

After segmentation, the areas of individual particles were 

calculated and are summarized in Table 2. A total of just un-

der 40,000 particles were used in the statistical evaluation for 

each sample. One can see that the inertial impactor biases 

the dispersion towards smaller particles. One must remember 

that the particles are dispersed in the inertial impactor method 

according to their aerodynamic diameter that not always cor-

responds to the individual particles’ physical dimensions. The 

shock wave disperser on the other hand produced dispersions 

with slightly larger averages (5.6 µm2). We believe that the lat-

ter result is closer to average soil particle sizes. 

Table 2. Particle area descriptive statistics for the inertial impactor sample 
and the shock wave disperser method

Particle Area  
Descriptive Stats

Inertial 
Impactor

Shock Wave 
Disperser

Mean Particle Area Estimate 1.2±6.1 µm2 5.6±23.1 µm2

Median 0.342 µm2 1.059 µm2

Sample Variance 36.7 µm2 567.1 µm2

Minimum particle area 0.17 µm2 0.19 µm2

Maximum particle area 386.3 µm2 996.4 µm2

A total of just under 40,000 particles were used in the statisti-

cal evaluation for each sample. Figure 14 shows that the iner-

tial impactor method favors smaller particle sizes (>60 percent 

of particles were smaller than 1µm2) and Figure 15 shows no 

particles greater than 9 µm were deposited by the inertial im-

pactor method. This is in very good agreement with theoretical 

values of a cutoff particle size of ~ 9.5 µm11:

(1)

where rp is the particle density, dp50  is the particle diameter, U 

is the flow velocity, h is air viscosity, Dj is the nozzle diameter,  

Cc is the cutoff particle size (parameters used were Dj = 6 mm 

and U = 4.51/min). 

Figure 14. The above graph shows a slight bias for smaller particle area sizes sampled by the inertial impactor in comparison to the shock wave disperser. 
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Furthermore, a plug-in for drawing the Voronoi tessellation 

diagram was used to estimate the inter-particle distances.12 

The algorithm estimates these by using local maxima of par-

ticles as the end-points of a single inter-particle line segment. 

Only distances between nearest neighbors were used in the 

calculation. See Figure 16 for a normalized distribution of the 

nearest neighbor distances. Figure 17 shows the logarithmic 

distribution,  revealing a small deviation in inertial impactor val-

ues stemming from the outer third ring of the sample where 

1 percent of the particles (172 out of 15662 total particles) oc-

cupied a third of the area (see Figure 19, top image).

Conclusion
This contribution focused on finding a practical way of determin-

ing the characteristics of existing particle dispersion methods 

and compared these to a new shock wave disperser device. 

Figure 15. Empirical estimate of the cutoff value for the inertial impactor method was found at <9µm since no particles greater were found in the sample. 
Note that these radii were calculated from the particle area data by assuming they were spherical i.e. by 4πr2 = 4/3(πr3).

Figure 16. Normalized nearest neighbour distances for inertial impactor sample vs shock wave disperser. Note that both shock wave dispersion methods 
show almost exactly the same values (only cone head values are shown) and are more densily packed than the inertial impactor sample (number of 
interparticle distances higher for same area).
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Figure 17. Interparticle distances by sampling method: the shoulder in the inertial impactor values suggests an area where the number of particles 
is smaller, thus their nearest neighbour values will deviate from expected mean values. See Figure 18 for the Voronoi triangulation plot of the inertial 
impactor sample and observe the outer (right) ring of the sample where in about a third of the area, there are only 172 particles located (from a total of 
~16,000). 

Figure 18. Delaunay Voronoi run on the shock wave disperser sample. From top to bottom: segmentation; particle area contouring; tagging of center of 
mass of each particle and the resulting triangulation overlay.

Figure 19. Delaunay Voronoi run on the inertial impactor sample. From top to bottom: segmentation; particle area contouring and triangulation overlay 
drawing (only centers of mass of particles shown). The mean separation of particles in the outer ring of the inertial impactor sample rises from 40-70µm 
to about 570µm.  
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It was found that trivial methods (sprinkling, slurry dispersion, 

and pipetting) suffered from the lack of reproducibility, as well 

as effects such as particle clustering, overlapping, and particle 

grouping on the edges (Marangoni effect). 

Mechanical methods on the other hand produced repro-

ducible results (as long as certain parameters were kept fixed). 

Several statistical tools were used to evaluate the dispersion 

quality, and whether each method was biased towards collect-

ing particles of a certain size. Using Fiji software along with 

several plug-ins (surface plots, line profiles, azimuthal averag-

ing, concentric circles, and granulometry), the distributions of 

the mechanical methods (inertial and electrostatic impactor, 

shock wave disperser) were found to be symmetrical around 

the geometrical center of the collection substrate, with little or 

no particle clustering. The shock wave disperser method was 

the method that dispersed the particles most evenly on the 

sample collector and showed the least bias in sampling par-

ticles based on their size (granulometry function).

In the small scale dispersion analysis, more than 60000 

particles per sample were analyzed and their nearest neighbor 

distances plotted. It was thus confirmed that the inertial impac-

tor biases the sampling towards the low end of the distribution, 

i.e. > 80 percent of the particles area sizes were between <1 to 

2µm2 and no particle was found bigger than 9µm in diameter. 

The shock wave dispersion method on the other hand sampled 

particles in a distribution that apparently matches better the in-

trinsic size distribution of the original material. In this case, the 

sampled particles ranged from < 1µm2 to 1000µm2 with ~ 40 

percent between 1 to 2µm2. A detailed statistical characteriza-

tion of the sampled particle populations is left for future work. 

Each approach has its advantages and disadvantages—the 

trivial sampling methods may be faster and make use of less ma-

terial, but the mechanical ones enable control in the reproducibil-

ity quality and distribution of particles. The mechanical methods 

have issues regarding potential contamination of the laboratory 

environment and cross-contamination between samples. Future 

work will involve miniaturization of the shock wave disperser de-

vice, as well as methods for controlling contamination. 

References
1. “CADFEM,” [Online]. Available: http://cadfem.en.softonic.com/.

2.  IAEA, “Report on Intercomparison IAEA/Soil7 of the De-

termination of Trace Elements in Soil,” IAEA, Vienna, 1984.

3.  J. Schindelin and I. &. F. E. e. a. Arganda-Carreras, Fiji: 

An Open-source Platform for Biological-image Analysis, 

Nature Methods 9(7), vol. 9, no. 7, pp. 676-682, 2012. 

4. K. Barthel. Interactive 3D Surface Plot, 2008. [Online]. 

Available: http://imagej.net/plugins/surface-plot-3d.html.

5. W. Rasband. Dynamic Profiler. 2003. [Online]. Available: 

http://rsb.info.nih.gov/ij/plugins/dynamic-profiler.html.

6.  P. Carl. Azimuthal Average. 2007. [Online]. Available: 

http://rsb.info.nih.gov/ij/plugins/azimuthal-average.html.

7.  R. Wayne. Concentric Circles. 2007. [Online]. Available: 

http://rsb.info.nih.gov/ij/plugins/concentric-circles.html.

8.  D. Prodanov. Granulometric Filtering. 2005. [Online]. 

Available: http://fiji.sc/Granulometric_Filtering.

9.  J. Schindelin and L. P. Chew. Delaunay Voronoi. 2006. 

[Online]. Available: http://fiji.sc/Delaunay_Voronoi.

10.  G. Matheron, Randoms Sets and Integral Equation, New 

York: Wiley, 1978. 

11.  C.-Y. Wu. Aerosol Transport. University of Florida, [On-

line]. Available: http://aerosol.ees.ufl.edu/aerosol_trans/

section09_d.html.

12.  J. Schindelin and P. Chew. Delaunay Voronoi. 2006. [On-

line]. Available: http://fiji.sc/Delaunay_Voronoi.

Keywords:
Safeguards, sample preparation, optical microscopy, SEM, 

shock wave disperser, inertial impactor, electrostatic impactor, 

Fiji.

http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Fcadfem.en.softonic.com%2F
http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Fimagej.net%2Fplugins%2Fsurface-plot-3d.html
http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Frsb.info.nih.gov%2Fij%2Fplugins%2Fdynamic-profiler.html
http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Frsb.info.nih.gov%2Fij%2Fplugins%2Fazimuthal-average.html
http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Frsb.info.nih.gov%2Fij%2Fplugins%2Fconcentric-circles.html
http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Ffiji.sc%2FGranulometric_Filtering
http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Ffiji.sc%2FDelaunay_Voronoi
http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Faerosol.ees.ufl.edu%2Faerosol_trans%2Fsection09_d.html
http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Ffiji.sc%2FDelaunay_Voronoi
http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Faerosol.ees.ufl.edu%2Faerosol_trans%2Fsection09_d.html


Topical Papers

76 Journal of Nuclear Materials Management 2016 Volume XLIV, No. 2

Sensitivity Analysis of Neutron Multiplicity Counting Statistics Using 
First Order Perturbation Theory for a Subcritical Plutonium Benchmark

Sean O’Brien, John Mattingly, and Dmitriy Anistratov 
North Carolina State University, Raleigh, North Carolina USA

Abstract
Neutron multiplicity counting measurements enable nonde-

structive detection of special nuclear material. It is important to 

estimate the uncertainty and sensitivity of measured and simu-

lated detector responses of the neutron multiplicity counting 

distribution. These uncertainties arise from the physical con-

struction of the experiment, from uncertainties in the transport 

parameters, and from counting uncertainties. In particular, in 

subcritical experiments the detector response is geometrically 

sensitive to the fission neutron yield distribution. The detec-

tor response is an integral quantity and therefore perturbation 

theory is used to perform a complete sensitivity analysis and 

uncertainty quantification (SA/UQ) on the moments of the neu-

tron multiplicity counting distribution. Current SA/UQ methods 

have only existed for the mean of the distribution. We apply 

perturbation theory to compute the sensitivity of neutron mul-

tiplicity counting moments to arbitrarily high order. Each mo-

ment is determined by solving an adjoint transport equation 

with a source term that is a function of the adjoint solutions 

for lower order moments. This enables moments of arbitrarily 

high order to be sequentially determined and shows that each 

moment is sensitive to the uncertainties of all lower order mo-

ments. We derive SA/UQ closing equations that are a function 

of the forward flux and lower order moment adjoint fluxes. We 

validate our calculations for the first two moments by compari-

son with multiplicity measurements of a subcritical plutonium 

metal sphere. We compute the first four moments of the mul-

tiplicity distribution and rank the sensitivity of the moments to 

nuclear data parameters. This work will enable a new method 

to adjust the evaluated values of nuclear parameters using sub-

critical neutron multiplicity counting experiments. A transport-

theory based model of neutron multiplicity moments uses few-

er approximations than point-reactor based models, enabling a 

more detailed sensitivity and uncertainty analysis of subcritical 

multiplicity counting measurements of fissionable material. 

Introduction
To accurately characterize a subcritical neutron multiplying sys-

tem, such as the plutonium sphere considered in this work, we 

must account for the higher order moments, beyond the mean, 

of the neutron multiplicity counting distribution. Non-multiply-

ing systems are characterized by Poisson statistics, where all 

higher order moments are explicit functions of the mean, as 

all neutron interactions are independent. Neutron multiplying 

systems introduce dependencies between events due to fis-

sion chain-reactions and introduce correlations between stages 

in fission chains.1

We count the number of coincident neutrons during a gate 

to construct a neutron multiplicity counting distribution,2 Figure 

1. The deviation from the Poisson distribution is evident in the 

broadening of the multiplying system distribution as a result of 

variations in the neutron population from fission chains of differ-

ing length. Knowledge of the moments of the distribution en-

ables us to characterize the kinetic parameters of the fissile sys-

tem via nondestructive assay through several integral quantities: 

neutron source strength, multiplication, and generation time.3, 4 

For a complete analysis we require knowledge of the asso-

ciated sensitivities and uncertainties in our measurements and 

simulations, that arise from uncertainties in the nuclear data, 

physical construction of the experiment, and from counting un-

certainties. We calculate the moments of the distribution by 

considering moments of the stochastic neutron transport equa-

tion (STE), which are inner products of deterministic forward/

adjoint fixed source transport problems.5, 6 As the moments of 

the counting distribution are inner products we use first order 

perturbation theory to facilitate SA/UQ on the moments to ar-

bitrarily high order. To close our SA/UQ system we develop 

contribution equations that couple the sensitivities between 

counting moments. All problems solved in this work are imple-

mentable in any forward/adjoint deterministic transport code 

capable of solving fixed source subcritical problems, such as 

PARTISN.7, 8 
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We use our new SA/UQ methodology on the moments of 

the neutron multiplicity counting distribution for the BeRP ball 

(Beryllium Reflected Plutonium). The BeRP ball is a subcritical 

sphere of weapons grade plutonium.9 We validate our calcula-

tions with experimental measurements of the mean count rate 

and excess relative variance (Feynman-Y).10 Finally, we gener-

ate the relative sensitivity coefficients for the mean and second 

moment of the counting distribution and explore the range of 

validity of first order perturbations for the mean and Feynman-Y. 

Moment and Contribution Equations
The moments of the neutron multiplicity counting distribution 

are arrived at by considering inner products of solutions derived 

from the moments of the STE, developed by Pal6 and Bell11 in 

terms of factorial moments. The qth order factorial moment is 

defined as,  

(1)

where the over-line denotes the expected value, and pn is the 

probability associated with n-coincident neutrons. The moment 

equations are a set of downwardly coupled linear adjoint and 

forward Boltzmann transport equations. Each moment pos-

sess a unique fixed source that is a function of lower order mo-

ment solutions. The SA/UQ closing equations, that couple the 

sensitivity between moments, are forward transport equations 

whose fixed source is a convolution of lower order moment 

forward and adjoint solutions.

 

We present the highlights of our derivations for the mean 

and second moments only, in previous work,12 we explicitly de-

rived the moment and contribution equations. The mean count 

rate, R1, is obtained by the standard inner product definition,

(2)

where y is the usual forward flux and sd is the detector mac-

roscopic cross-section (effectively a detector response func-

tion with units of cm-1). Using the adjoint equality,  

where L† and L are the adjoint and forward  
transport operators, respectively, we can express the mean 

count rate as

(3)

where Q is the usual neutron source term in the Boltzmann 

transport equation and  is the solution of Eq. 4.

(4)

By considering the adjoint we are able to circumvent de-

rivatives of the forward flux with respect to the transport pa-

rameters when constructing the sensitivities of the mean.13 

The mean adjoint flux represents the phase-space map of po-

tential neutron births to contributions to the mean count rate, 

R1. The adjoint is essential to SA/UQ as the set of transport 

parameters, a�,is typically on the order of thousands, consist-

ing of densities, energy grouped cross-sections and other data: 

fission yield and spectrum distributions, decay rates, etc. Using 

the adjoint we arrive at a calculable expression (i.e., on that 

contains no flux derivatives) of the first order sensitivity of the 

mean to our parameters, Equation 5.

(5) 

 

The second moment of the count rate, R2, is given by Equation 6,

(6)

and is the solution of Eq. 7.

(7)

Figure 1. Poisson distribution compared to multiplicity distribution 
measured from a subcritical plutonium sphere, [3]. Fission chains cause a 
deviation from Poisson statistics. 
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where,

(8)

is the spatial importance (assuming all fission neutrons are 

born with the same spectrum) of an induced fission at ~r to the 

response, which appears as a square, since neutron doubles 

are formed by pairs of singles, and  .12 

The first order sensitivity of the second moment contains 

derivatives of the forward flux and mean adjoint. The deriva-

tives of the forward flux are avoided by the mean adjoint, as in 

Equation 5. The mean adjoint flux derivatives are circumvented 

by a contributon equation, Equation 9.

(9)

The contributon flux, F2, is the forward flux of neutron 

doubles that contribute to the second moment. This is appar-

ent in the source term, Q2, where we have the production of 

fission doubles weighted by their importance. We can now 

write the first order sensitivity of the second moment, Equa-

tion 10.

(10)

where we have defined a subset of parameters,b�, =  

as the contribution terms are only 

required for mean adjoint flux derivative terms.12 With the mo-

ments and their sensitivities defined we turn to some compu-

tational results.

Numerical Results
We validated our model using experimental data of the bare 

BeRP ball, a 4.4 kg sphere of alpha-phase weapons grade plu-

tonium metal with the NPOD detector, which contains an array 

of SA/UQ of Neutron Multiplicity Statistics 50cm 3He propor-

tional counters.9 The subcritical plutonium source has a radi-

us of 3.794 cm, and consists of 94 percent 239Pu (multiplying 

medium) and 6 percent 240Pu (spontaneous fission source) by 

mass fraction.9 The experimental setup is depicted in Figure 2. 

In Reference 12, we validated our model by computing 

k-effective (kmcnp = 0:7768 and kcalc = 0:766714, the mean count 

rate (R1;exp = 8:284x103 cps and R1;calc = 8:297x103 cps15), and 

relative excess variance, Equation 11, where m is the mean 

and s2 is the variance, (Yexp = 0:33 and Ycalc = 0:343), which 

agreed well with experiment.

(11)

We approximated the detector response function, sd, as 

an efficiency, abs(E), on the boundary of the sphere.3 The abso-

lute detector efficiency is the product of the intrinsic detector 

efficiency with the solid angle, . 

We compute the response by convolving the detector response 

function, Figure 3, with the neutron leakage current, j�, such 

that the detector response function is treated as, Equation 12,

(12)

where  is the source boundary surface and  is the sur-

face normal vector. As  j� = y, the mean count rate is cal-

culated as,

(13)

and similarly for the second moment, R2. Since the publication 

of Reference 12, we discovered that our transport solutions 

were not fully converged with our chosen spatial and SN dis-

cretizations. We performed a space-angle convergence test for 

the mean and Feynman-Y, Equation 11, the relative excess vari-

ance, in Figure 4. Using the convergence data, we performed 

an Aitken extrapolation and observed a reduction in the mean 

count rate, R1, from 8; 300 cps to 8; 000 cps. A reduction in the 

Figure 2. Experimental arrangement at Nevada Test Site
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Feynman-Y was observed as well, from 0:33 to 0:30. While our 

seemingly fortuitous, though inaccurate, choice of discretiza-

tions agreed very well with experiment, it did not support previ-

ous findings that for 239Pu was in error16. Our converged results 

serve to substantiate the prior findings concerning the average 

fission yield for 239Pu.

Relative Sensitivity Coefficients
Using the first order sensitivities of the moments of the count 

rate we can construct relative sensitivity coefficients, , 

for each moment of order q, defined as Equation 14 for 

each parameter n.

(14)

We present several of the most influential parameters 

in group collapsed form, where we multiply the integrated 

group-wise sensitivity coefficients by the energy average of 

the parameter divided by the count rate moment. The value 

of a relative sensitivity coefficient is a measure of the percent-

age change in the observable, count rate moment, given a 1 

percent change in the parameter. E.g., for S = 4, a 4 percent 

change is observed. 

The mean count rate is most sensitive to fission parameters 

for 239Pu, sf and n–, as seen in Figure 5. This sensitivity is ex-

pected as it is the major source of neutrons as the bare BeRP ball 

has a neutron multiplication factor of M = 4:4.9 The mean is also 

sensitive to the scattering cross-section as fission neutrons are 

born fast and down scattering would enable more fissions where 

the fission cross-section is larger (thermal domain).

The second moment is dramatically sensitive to the fis-

sion parameters, as seen in Figure 5. This markedly large 

sensitivity arises from the coupling between the mean and 

second moment, recall that the second moment adjoint 

source term is a function of the mean adjoint flux squared, 

Equation 7. This causes a parameter perturbation/uncer-

tainty in the mean to be amplified in the second moment.  

Figure 3. Intrinsic detector efficiency sd /eW

Figure 4. Space-angle convergence test for R1 and Y (relative excess variance), where 2N is number of uniform spatial mesh cells and SN is the order of 
angular quadrature. The mean response is calculated using 12.
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We used a reaction rate collapsed two-group problem to inves-

tigate the range of validity of the first order sensitivity approxi-

mation for the mean and the Feynman-Y. First order perturba-

tion theory can be shown to be invalid when the change in the 

response is larger than the perturbation. In some problems, the 

assumption inherent to first order perturbation theory that the 

first order Taylor series truncation is an accurate representa-

tion of sensitivity (i.e., responses change linearly with perturba-

tions) can be invalid. Other researchers, such as Abdel-Khalik’s 

generalized perturbation theory,17, 18 have developed higher or-

der sensitivity analysis that do not assume the first order Taylor 

series truncation is valid. 

Cross sections were collapsed from 44-groups using the 

flux spectrum, and moments of Pn were collapsed using the 

fission rate spectrum (sfy). We independently perturbed each 

parameter and found the relative error between the linear ap-

proximation, using the sensitivity coefficients, and explicit 

transport solves using the perturbed parameters. In Figure 6 

are the fast group linear perturbation errors, where a 1 on the 

vertical axis corresponds to a 10 percent error. The thermal 

group is negligible as there is minimal thermalization in pluto-

nium metal. The error in the mean is acceptable over a wide 

range of perturbations. The Feynman-Y error is manageable for 

small perturbations but drastically increases for larger perturba-

tions, particularly for n– and sf. 

Figure 5. Group collapsed relative sensitivity coefficients of the mean count rate, R1, and second moment count rate, R2

Figure 6. Fast group linear perturbation error for R1 and Y
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Conclusions and Future Work
In summary, we developed a new method of performing SA/

UQ on the count rate moments of the neutron multiplicity 

counting distribution. We have developed the moment equa-

tions up to tenth order and the SA/UQ contribution closing 

equations to fifth order, for induced and spontaneous fission 

contributions. All equations required of this work (forward, 

adjoint and contribution) can be solved by any forward/adjoint 

fixed source deterministic transport code, enabling easy imple-

mentation into existing codes. The equations are only coupled 

in the downward direction permitting one to sequentially solve 

up to the desired order moment. 

We found that our converged count rate moments sub-

stantiate earlier findings that  for 239Pu is incorrect.16 The rela-

tive sensitivity coefficients revealed a strong coupling between 

the first and second moments, expressed as large coefficients 

in the fission data. Present work is focused on explicitly verify-

ing the range of validity of the first order sensitivity approxima-

tion for the mean and second moment using a more refined 

group structure. We will improve these calculations by using 

HPC resources using a more refined group structure, beyond 

the 44-groups considered here. With sensitivity coefficients 

we will perform UQ by propagating the uncertainty in the pa-

rameters SA/UQ of Neutron Multiplicity Statistics to yield the 

uncertainty in the count rate moments by,

(15)

where CRq is the uncertainty in the qth moment, and C is the 

model parameter covariance matrix.16  Finally, we will explore 

the impact of reflected plutonium spheres, beyond the current 

bare BeRP ball studies. 
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Not all scholarly works benefit from 

a treasure trove of facts and details. 

Sometimes there is too much data. The 

effort of the writer must be to tease out 

the most salient issues, arrange them 

in a manner consistent with the goals 

of the book, and present them in a co-

gent discussion that is accessible to the 

intended audience. It is not an easy task 

and it is not always successful, as any 

professor (who essentially does similar 

work preparing lectures), historian, or 

writer of non-fiction will tell you.  

Jina Kim’s work clearly is blessed by 

an abundance of information concerning 

the threat to the nonproliferation regime 

that North Korea poses. The information 

is offered in six chapters under a politi-

cal science umbrella designed to explore 

the book’s subtitle: The Nuclear Taboo 

Revisited?  The taboo she refers to is the 

denial to develop nuclear weapons, and 

not as she is careful to point out, the de-

nial of their use. Kim seeks to examine 

how the North Korea’s negative identifi-

cation as an outlier state and its nega-

tive interactions with the United States 

and its Southeast Asia partners contrib-

uted to the crisis. She patently rejects 

the North’s behavior as irrational. In her 

analysis, there are credible motivations 

for the regime’s behavior.

The treatise is divided into a sec-

tion on the “first” DPKR nuclear crisis, 

followed by chapters on North Korea’s 

negative identification (its view of itself 

and its relation to other members of the 

international community), another on its 

negative interaction with the five negoti-

ating nations with emphasis on the Unit-

ed States, a chapter on the “second” 

crisis, and a final section reviewing the 

negative identification and interactions 

the DPKR experienced from it.   

There is much detail here, packed 

into a dense narrative that, despite its 

overabundance of detail, must be cited 

for the factual gems it contains that 

are crucial to understanding the DPKR. 

Take for example, the section on North 

Korea’s guiding social principal of Juche 

ideology found in Chapter 3. This phi-

losophy stresses national autonomy, 

self-reliance, and self-respect. It has 

been infused into the daily lives of North 

Koreans since 1972 when it was em-

bedded in a new constitution adopted 

by the Supreme People’s Assembly.  Its 

importance arises when North Korea 

confronts international rules that re-

quire obedience to an external agency. 

The International Atomic Energy Agency 

(IAEA) is one such body that presents a 

philosophical dilemma for the DPKR.  For 

the North, cooperation while tolerating 

the presence of foreign inspectors with 

clear discovery and reporting intentions 

when fervent independence and self-

sufficiency has been the long-standing 

commandment of the day is, at best, 

very difficult. Another example is the 

Songun policy, implemented during the 

period of the second nuclear crisis. This 

simply put, means that the DPRK places 

the military above all else even at the ex-

pense of the well-being of its citizenry. 

Alarming in its outcome, the Songun 

policy stresses the importance of the 

military for the protection of socialism. 

Since the fall of socialism in Eastern Eu-

rope, the DPRK has stressed its solitary 

struggle to defend socialist ideals.

Though the explanations of Juche 

and Songun are clear and become clear-

er and more relevant as one dives fur-

ther into the book, other external factors 

perhaps mitigate against clarification 

and a full understanding of the behavior 

of the DPKR. One of these may be an 

American, and perhaps an international 

prejudice, against North Korea. This nu-
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clear crisis has been so long in the mak-

ing and the actions of the DPKR so frus-

trating, rash, and seemingly irrational at 

times, that statements of fact that seek 

to explain the apparent irrationality can 

run up against a wall of chauvinism, in-

tolerance, and incredulity constructed by 

the outsiders the North must deal with. 

It can be presumed that the actions of 

the DPKR have been so despicable that 

no depth of factual explanation for them 

can have any credence or assist in the 

search for a solution to the crisis. This 

is, to put it mildly and kindly, most un-

fortunate. But this is exactly what Kim is 

attempting to do here. 

This is a concerted effort to seek 

reason behind the apparent aberrant be-

havior of North Korea. Such an analysis is 

welcomed. However, to execute this for 

a general readership (my take is that Kim 

clearly means her audience to be political 

scientists), due the aforementioned pre-

sumptions of intolerance and I daresay 

hostility directed to the DPKR, requires 

great skill.  But even in a scholarly ven-

ture such as this, the author’s interpre-

tation of the North’s behavior—the “ex-

cuses” to use a crude word—can leave 

a reader feeling as if thy are a bit “too 

convenient” for the agenda the North 

Koreans are pursuing. Often it seems, 

their pronouncements and philosophies, 

legitimate in the view of Ms. Kim, seem 

to provide the North with a flimsy justifi-

cation for its less-than-sterling behavior.  

It is one thing to pronounce a philosophy 

of autonomy and independence from 

foreign interference, but it’s another to 

sign the Nuclear Nonproliferation Treaty 

then break from it and claim unfair for-

eign (IAEA) interference.  We know that 

everything the DPRK does is meant to 

buoy the regime and we know that the 

author wishes only to transmit these as 

details and objective facts that interna-

tional negotiators must understand, but 

the reader may not always perceive this. 

This then is where prejudice can creep 

in with the potential for a misread of 

the book. The abhorrent behavior of the 

North Korean regime can be explained, 

the author’s contends, on the basis of 

certain internal constructs. To under-

stand it requires that the reader discard 

any prejudgments about the nation and 

its behavior to date. 

A narrative as detail-rich as this one 

would ordinarily be considered an ad-

vantage; however, the various sections 

of the book read somewhat like a series 

of The New York Times articles. They 

are replete with facts that make logical 

sense but one must remain diligent to 

maintain the cohesiveness and threads 

of the author’s argument. As a result, 

one can feel as if there is too much in-

formation in the discourse. The inexpe-

rienced reader can become lost once 

immersed in the specifics.  As a result, 

the narrative sometimes reads like a re-

view of every dispute that the DPKR had 

with its adversaries in the nuclear crisis. 

It’s not a terrible result—the facts are il-

luminating—but one does not feel satis-

fied that the author achieved her goal of 

explaining why the North and the rest of 

the world are at the current unresolved 

situation.  The reasoning and the conclu-

sions are there. It’s just not an easy road 

to them.

Perhaps, then, the strongest portion 

of the book is its ending, summary chap-

ter. Here, we can rely on the author to 

point out what her analysis did achieve.  

In brief, it indicates that the unresolved 

issues of the crisis are almost sure to re-

emerge in future negotiations.  It is also 

clear that an understanding of the do-

mestic beliefs of the DPKR can assist to 

predict its behavior.  The uncoordinated 

efforts of the China-hosted negotiations 

need to be revamped to avoid the mis-

cues that allow the North to take advan-

tages in previous negotiations or to take 

actions antithetical to their spirit. Slow 

implementation of what was agreed 

upon bred suspicion of United States' 

intentions in the North while fostering a 

belief that the United States was disre-

spectful of North Korea. Such practices 

also need repair to foster future negotia-

tions that will achieve significant results 

for both sides.  Most significantly, the 

author concludes that evidence exists 

indicating that future negotiations are 

warranted. The willingness of the DPRK 

to suspend components of its nuclear 

program if its demands are met leads to 

the possibility that a way out of the crisis 

exists. Respect paid towards Pyongyang 

and a prioritization of its demands—fail-

ures of procedure made primarily by the 

United States in the past—may lead to 

success in coming years. Mere “stabi-

lization” of the situation, i.e., peace on 

the Korean peninsula as it now stands, is 

not success. The author highlights unan-

swered questions that remain to be re-

searched: Will the DPRK-China relation-

ship affect how the North views itself in 

relation to the world? Will the status of 

the North’s nuclear program affect the 

security posture of the United States? 

Well-researched with nearly fifty 

pages of notes and a nine page bibliog-

raphy, Kim’s book is, despite the above 

criticisms regarding detail, very concise 

coming in at only 149 pages of narrative. 

This book is undoubtedly useful as a re-

capitulation of the history that brought 

us to the current situation but the read 

is a bit of a heavy lift.  Though it is an im-

portant edition to the discussion of the 

DPKR nuclear crisis, it is not for those 
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new to the situation. At times, it feels 

as though one is reading a rather techni-

cal doctoral thesis. This effort may also 

not appeal to those with limited politi-

cal science background.  Despite these 

criticisms and the requirement to keep 

and enter the author’s discourse with an 

open mind, the book must be applaud-

ed for its unique mission to unravel the 

mystery behind the reckless behavior of 

the North by seeking to explain how that 

nation views itself and its relationship to 

the rest of the world.
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As I write this column, the terrible ter-

rorist attack in Paris is still fresh in ev-

eryone’s mind, Belgium’s prime minister 

has established the highest terror alert 

for a sustained “serious and imminent” 

threat, and Russia has determined the 

downing of its Metrojet airliner over the 

Sinai was a result of a terrorist bomb. 

Intelligence assets have joined forces 

to find the planners of the Paris attack, 

and representatives from many nations 

are gathering to develop strategies for 

addressing the international concerns 

of a growing threat to freedom and de-

mocracy. All of these events come at a 

time when there are many critical uncer-

tainties that could impact the Institute, 

as addressed in last issue’s column, “A 

World Full of Critical Uncertainties.”1 

In this context, there is a question that 

many are asking more and more these 

days: “What happens if one of these 

terrorist groups obtains nuclear materi-

als?”2

Sometimes life seems to be too 

complicated.

Using Scenarios to Rehearse 
Future Worlds
There is no way to make the world we 

live in less complicated; however, there 

are planning tools, such as scenarios, 

that can be used effectively to rehearse 

possible futures, discuss actions that 

can be taken as events unfold leading 

to those futures, and create a greater 

sense of understanding and ability to 

address even improbable uncertainties. 

Scenario planning has been used effec-

tively by large corporations and even 

governments to address complex tech-

nological, political, and social situations. 

Examples abound in the literature,3 and 

the tool is in continuous use these days 

by organizations to address highly com-

plex issues such as climate change and 

energy resources.4 The stories that are 

created in the development of these 

scenarios allow managers and policy 

makers to discuss the worlds in which 

decisions have to be made, and develop 

the preparatory actions that need to be 

taken to accommodate uncertainties.5

Constructing the Scenarios
In last issue’s column I indicated that, in 

its most useful form, scenarios can be 

shown as an orthogonal construct using 

descriptors of the two most distinctly 

different and impactful Critical Uncer-

tainties, creating a landscape for four 

distinct and challenging future worlds.6 

In 1998 I constructed a set of scenarios 

for a U.S. Department of Energy (DOE) 

site looking at an otherwise potentially 

optimistic turn of the millennium, in the 

context of the underlying critical uncer-

tainties of the proliferation of nuclear 

weapons technologies and the theft or 

diversion of nuclear materials. One of 

the future worlds in that set was named 

“The Dominos Fall.” This characteriza-

tion, posited by Dr. Sig Hecker, former 

director of the Los Alamos National 

Laboratory, looked at a troubling time 

when more and more nations joined the 

“nuclear club.” Figure 1 shows a simpli-

fied version of that construct and some 

of the speculative “end points” that cre-

ated the future world stories used to 

stretch the imagination of management. 

Of particular note, one of the worlds, 

“Prepare for the Terrorists,” speculated 

on the evolution of non-nation-states us-

ing nuclear materials in a world that oth-

erwise seemed to be headed toward a 

more peaceful future, but where those 

nuclear materials were not adequately 

controlled, and inaction by leaders cre-

ated an environment for those actors to 

achieve their goals.

Taking the Long View in a Time of Great Uncertainty
Sometimes Life Seems Too Complicated

By Jack Jekowski 
Industry News Editor and Chair of the Strategic Planning Committee

This column is intended to serve as a forum to present and discuss current strategic issues 
impacting the Institute of Nuclear Materials Management in the furtherance of its mission. 
The views expressed by the author are not necessarily endorsed by the Institute, but are 
intended to stimulate and encourage JNMM readers to actively participate in strategic 
discussions. Please provide your thoughts and ideas to the Institute’s leadership on these 
and other issues of importance. With your feedback we hope to create an environment of 
open dialogue, addressing the critical uncertainties that lie ahead for the world, and identify 
the possible paths to the future based on those uncertainties that can be influenced by the 
Institute. Jack Jekowski can be contacted at jpjekowski@aol.com.

http://www.jnmm-digital.com/jnmm/volume_44__no__2/TrackLink.action?pageName=86&exitLink=mailto%3Ajpjekowski%40aol.com
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The introduction to this set of 1998 

scenarios came with a prescient warning:

As the world enters the third mil-

lennium, it teeters on the brink of 

disaster.  With the proliferation of 

weapons of mass destruction, man-

kind no longer has the luxury to al-

low others to exercise unilateral ac-

tions in support of extreme agendas.  

The potential for a single incident to 

take the lives of millions of people, 

impact the economy of countries or 

regions in the trillion of $$, and ef-

fect social change of unprecedented 

scale requires the creation of a new 

global social conscience and rule of 

law.  Unfortunately, mankind has 

acquired the power for such de-

struction before it has developed 

a responsible social structure.  In 

this unstable world a sequence of 

discontinuities, particularly those 

for which an inappropriate, or no re-

sponse occurs, could lead mankind 

to those desolate worlds so often 

depicted by Hollywood.  It is of para-

mount importance that world leader-

ship understands the consequences 

of their actions or inaction and en-

gages in strategic conversations that 

identify critical indicators that could 

lead to the unimaginable…

Creating Scenarios of Interest 
to the Institute
Based upon current critical uncertainties, 

as identified in my last column, one could 

envision creating a set of future worlds 

in which strategic discussions pertinent 

to the future of the INMM could occur. 

Those future worlds would be created by 

the nexus of two critical uncertainties on 

an orthogonal set of axes. One possible 

set of critical uncertainties that could be 

used to create those future world stories 

would be characterized by:

The advancement of nuclear tech-

nologies

Global nuclear security threats
The advancement of nuclear tech-

nologies might include new national 

technical means of detecting clandestine 

nuclear materials and weapons-related 

activities, research that many of our In-

stitute members are engaged in; or the 

development of more secure and safe 

nuclear reactor concepts, such as the 

advancements promised by small modu-

lar reactors.7 On the opposite side of the 

axis, it could include darker aspects of 

the future that would allow individuals 

or groups to more easily build weapons 

of mass destruction,8 or open new paths 

for the acquisition of nuclear materials or 

the surreptitious manufacture of those 

materials.9 

Global nuclear security threats 

abound, but have been mitigated greatly 

by the commitments made by nation-

states as a result of the Nuclear Security 

Summits of the past six years, leading 

to the enhanced protection of nuclear 

materials and facilities.10 However, the 

once optimistic future that the end of the 

Cold War offered has suffered setbacks 

recently as every nuclear weapons state 

pursues modernization efforts for their 

stockpiles and delivery systems,11 and 

as once-tempered political rhetoric has 

been over taken by frightening words of 

nuclear confrontations.12 The prolifera-

tion of nuclear weapons knowledge has 

forever let the “genie out of the bottle,” 

and despite some perspectives that over 

time that knowledge can be allowed to 

deteriorate, the hope for a “global zero” 

seems farther away than ever.13 

In future columns I hope to explore 

the development of a set of scenarios—

Figure 1. Global nuclear danger scenarios circa 1998
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“future world stories”—that will capture 

the imagination of the membership and 

allow us to better understand the role 

the Institute can play in this very com-

plicated world. As always, I would wel-

come thoughts and ideas that can help 

shape those future world stories.
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Calendar

April 17–19, 2016
A Technical Meeting on Nuclear 
Energy and Cyber Security
A Joint Meeting of the Institute  
of Nuclear Materials  
Management, the U.S. Naval 
Academy, and the American 
Nuclear Society
Annapolis, MD USA

April 17–22, 2016
Tritium 2016
11th International Conference 
on Tritium Science & Technology
Sponsored in part by INMM
Charleston Marriott
Charleston, SC USA

April 26–27, 2016
INMM Safeguards Culture
Texas A&M University
College Station, Texas USA

July 24–28, 2016
INMM 57th Annual Meeting
Atlanta Marriott Marquis
Atlanta, GA USA 

September 18–23, 2016
PATRAM 2016
Kobe Portopia Hotel
Kobe, Japan
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Papers are acknowledged upon receipt and are submitted promptly for review 
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news and activities!

INMM 
Safeguards 
Culture 
Workshop
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View the online agenda

Read the Communicator
Published three times a year
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