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It is with great sadness that I report the
loss of a great friend and colleague.
Vince DeVito, who has been the
Secretary for the Institute for as long as
I can remember, passed away while playing
golf in Naples, Florida, in April. He has
always been one of INMM's most loyal
members and has been our connection
to the history of the institute. He was
always willing to serve wherever he
could. Vince was a mentor to many of
us. He will be missed greatly but remem-
bered with honor and admiration. 

Spring is a great time of year for
INMM. This is the time of year when
we put together the technical program
for the annual meeting and we come up
with a budget for the year. This year the
INMM Executive Committee has also
used springtime to look to the future of
the Institute. 

Charles Petri and his Technical
Program Committee spent a full day in
March laying out the technical program
for this year’s annual meeting. A lot of
work takes place at headquarters prior to
this; they make sure we have everything
we need ahead of time to make this
process as easy as possible. The Technical
Program Committee had more than 470
papers to sort through and assemble into
a program and it looks to be very excit-
ing. I believe this is the most papers sub-
mitted for an annual meeting in many

years. We were really pleasantly surprised
in the response to our call for papers,
especially in a down economy.

The Executive Committee (EC)
worked very hard in March to come up
with a budget to support the work of the
institute. After a couple of iterations of the
budget, we believe we have put together a
plan to carry us forward for the next year
and to strengthen the foundation of our
organization. 

In March we also spent some time on
strategic planning. EC Member-at-Large
Grace Thompson is facilitating this effort.
It is clear from the types of papers we are
receiving for the annual meeting that some
technical divisions have more interest than
others. We understand that the papers we
receive are tied to the work that is being
done in government and industry. For
example, when funding was increased for
implementation of technology to
increase security following September 11,
there was less funding appropriated by
U.S. National Nuclear Security
Administration for R&D in this area. As a
result the Physical Protection Technical
Division did not receive as many papers as
it was accustomed to because most of their
papers were typically centered on new
technologies. At the same time the U.S.
Department of Defense continued to
spend R&D money in this area but they
do not largely participate in our organiza-

tion. Strategic planning for the institute
will be a dynamic ongoing activity. We
have currently established a focus group
chaired by Member-at-Large Ken
Sorenson to take a look at the structure of
the organization. We want to make sure we
continue to meet the needs of our mem-
bership and that we are all inclusive in rep-
resenting the community of nuclear
material management.

I would like to emphasize the impor-
tance of our student chapters. We recog-
nize that student chapters are vital to the
INMM and are a source of future profes-
sionals in nuclear material management.
Understanding the needs and strengths of
student chapters to us as an organization
will be integral to our strategic planning. 

The Institute has made a one time
donation to the new “National Museum
of Nuclear Science and History” located in
Albuquerque, New Mexico USA. The
museum is an affiliate of the Smithsonian
Institution and is chartered by Congress.
For our sponsorship we are recognized on
the large periodic table of the elements
that is prominently displayed on the
entryway floor of the museum. We are
proud to be part of this educational
resource on nuclear history.

INMM President, Steve Ortiz can be
contacted by e-mail at sortiz@sandia.gov.

President’s Message
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INMM President



INMM lost a dear and dedicated friend
on April 8, 2009, when Vince DeVito
died suddenly playing golf in Naples,
Florida USA.  Although Vince was never
president of our Institute, his wise leader-
ship was always present, especially because
he held the position of secretary since
1973.  With his Italian heritage, he was
affectionately referred to by many as the
Godfather of the Institute.  He has been
recognized as the unofficial historian of
our Institute.  He will be definitely a hard
act to follow. At all the Executive
Committee Meetings that I have attended,
Vince’s voice was always heard.  When he
spoke, everyone listened. He always came
from a position of past history, coupled
with future vision.  Vince was a very spe-
cial person and he will be dearly missed.  

We have plans to appropriately reflect
on Vince’s life and activities in our
Institute in the summer issue of the
Journal, which will be available at our
Annual Meeting in Tucson, Arizona USA,
in July.  There is a nice brief summary of
his INMM history on the INMM Web
site at http://www.inmm.org.  There is
also a blog to share information about
Vince at http://vincentdevito.blogspot.-

com. This blog, which was posted by his
daughter Victoria, says the following:
“Anyone who knew ‘Big Vince’ knows
that he played golf with the same passion
that he lived life, and he could not have
found a better way to depart from us.”  He
contributed much to our Institute, but I
believe one of his most favorites was the
formulation of our INMM golf tourna-
ment at our annual meeting.  

In this issue we have two technical
articles.  The first is Process Monitoring
Techniques for Nuclear Material Diversion

Detection, authored by J. Wesley Hines,
James Henkel, and Belle Upadhyaya, all at
the University of Tennessee in Knoxville,
Tennessee USA.  This paper considers
online monitoring models for detecting
diversion of uranium from a hypothetical
uranium blend-down facility having feed
lines of high-enriched uranium and low-
enriched uranium gaseous hexafluoride.
The second paper, Bayesian Estimation of
the Source and Suppression Effects in Vehicle
Radiation Signatures, is authored by James
Gattiker and Tom Burr, both of Los
Alamos National Laboratory, Los Alamos,
New Mexico USA.  They explore the
sources of the components comprising a
radiation signal from scanning containers
and vehicles for radiation-emitting cargo,
with the intent to gain improved
detectability and data anaylese.

As a final paper, Yvonne Ferris, our
INMM president in 1985 and 1986, pro-
vides her thoughts on the improvements
and growth of our Institute, thus adding
to remembrances of our 50-years.  She
provides some interesting insights.

JNMM Technical Editor Dennis
Mangan can be reached by e-mail at dennis-
mangan@comcast.net.  

Technical Editor’s Note
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An INMM Era Has Ended

By Dennis Mangan
Technical Editor

Vince DeVito with his wife Jeanne. The
couple was married for 55 years until Mrs.
DeVito's passing



Abstract
This paper first reviews the state-of-the-art in process monitoring
as applied to nuclear power, chemical industry, and other process
facilities. The example application of using online process moni-
toring technologies for safety-related sensor calibration monitor-
ing is presented. This application summarizes the methods, data
requirements, performance measures, and uncertainty quantifica-
tion techniques from the newly published report NUREG CR
6895. The methods are applied to a simulated blend-down oper-
ation similar to the fissile mass flow monitor for the HEU trans-
parency implementation instrumentation in Russia, described by
Uckan, March-Leuba, and others (INMM 2001). The conven-
tional process monitoring methods are augmented through the
development of algorithms that allow the addition of fissile flow
measurement instrumentation and through data reconciliation
techniques. The results of the simulation are used to quantita-
tively assess the ability of process monitoring techniques to detect
changes in normal operations, diversion of nuclear materials, sen-
sor calibration drift, anomalies in system devices, and nuclear
material enrichment.

Introduction
Online Monitoring (OLM) techniques have been developed and
applied to process applications such as safety critical sensor cali-
bration verification in the nuclear industry.1 The three volume
NUREG/CR-6895 series2-4 was developed for the NRC to pro-
vide background, technical guidance and explore implementation
issues related to the use of Online Monitoring (OLM) for the
extension of safety critical sensor calibration intervals.
Additionally, a two volume IAEA series of reports5,6 was devel-
oped to provide guidelines to member states for the use of online
monitoring techniques for a variety of applications in nuclear
power plants. These techniques have been approved in a general
way for nuclear power plants for monitoring and calibration of
safety critical components and are used extensively in the nuclear
power industry.1

The purpose of online sensor calibration monitoring is to
identify sensors that may require maintenance due to sensor drift
or other malfunction. In OLM systems, data collected from plant
sensors are evaluated with an auto-associative empirical model to
obtain an independent estimate of the actual, un-faulted plant

parameter. This estimate is compared to the sensor signal in order
to determine if the sensor has faulted. With this technology, con-
tinuous or near-continuous sensor surveillance is possible. As a
result, it is possible for manual sensor calibration to be performed
based on the sensor’s condition, rather than the time-based calibra-
tion schedule now observed. These techniques use empirical mod-
els to monitor a process for anomalous behavior that may be due to
equipment malfunction, degradation, or improper operation. 

Online Monitoring was developed to assist condition moni-
toring (CM) of plant equipment. CM is the practice of identify-
ing the operating status of system components and using the
current component condition to determine the optimal mainte-
nance schedule. Previous maintenance strategies relied on preven-
tive (periodic) maintenance and reactive maintenance. Preventive
maintenance means performing maintenance on a set time sched-
ule, regardless of the equipment’s current condition. Preventive
maintenance has two major drawbacks. First, maintenance
resources are wasted on systems that do not require maintenance,
leading to expensive and unnecessary maintenance schedules. In
addition, performing unnecessary maintenance on healthy com-
ponents can introduce failure catalysts into previously properly
working systems. Conversely, reactive maintenance is performing
maintenance when a system component fails. This maintenance
strategy leads to unplanned and expensive system downtimes.7

CM can be further divided into two major tasks: state esti-
mation and state monitoring. State estimation refers to estimating
the current condition, or state, of a system component. Three
techniques are generally used in state estimation: redundant sig-
nal monitoring, reference signal monitoring, and diverse signal
monitoring. State estimation using redundant signals takes the
average sensor reading when a large number of redundant signals
are available and uses that average sensor reading as an estimate of
the system state. State estimation using reference signals involves
comparing a sensor’s response to a calibrated reference signal to
distinguish between sensor drift and process drift. The third tech-
nique, state estimation using diverse signals, is useful when a large
number of redundant sensors are not available. Instead of deter-
mining the system state from a set of redundant signals or a ref-
erence signal, the system state is determined from other system
sensors that are correlated with the sensor being monitored. This
technique is generally more practical than installing a large num-
ber of redundant sensors and relies heavily on both physical and
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empirical modeling. Physical modeling relies on knowledge of the
physics of the system to predict system states. For instance, by
measuring the temperature of a gas in a known volume, the pres-
sure of the gas can be predicted based on established physic rela-
tions of gas pressure and temperature. While physical modeling
has the advantage that it allows one to predict future system states
for new process operation, it has the disadvantage that it is not
easily generalized to different systems because it requires detailed
knowledge of the physics particular to the system. Alternatively,
empirical modeling does not require knowledge of the system’s
physics, and it does not provide any analyzable relationships
between system parameters. Instead, empirical modeling com-
pares current operating conditions to past operating conditions to
determine the expected current condition. The disadvantage of
empirical modeling is that its predictive range is limited by the
past operating conditions. If a new process condition is encoun-
tered that is significantly different from the past operating history,
the empirical model will be unable to predict the new operating
condition. However as data exemplifying the new operating condi-
tion is appended to the known past operating condition data,
model predictions become more reliable. A more complete techni-
cal review of CM and OLM techniques is available in Reference 7.
Historically, these monitoring techniques have been applied specif-
ically for condition monitoring for maintenance scheduling.8

Application on OLM techniques for safeguards is not a new
concept. Several papers exploring OLM techniques at gaseous
centrifuge enrichment plants for the detection of undeclared pro-
duction by monitoring the enrichment cascade and the load cell
stations are available in References 9-14. Additionally, a review of
process monitoring techniques applied to safeguards is available
in Reference 15. This paper explores the application of empirical
monitoring techniques for safeguards monitoring of a uranium
blend-down enrichment facility. 

Facility and Instrumentation Description
In a hypothetical uranium blend-down facility, uranium of two
different enrichments is blended into a product with a desired tar-
get enrichment. The facility is set up to run in a batch mode,
where tanks of high-enriched uranium-hexafluoride (HE-UF6)
and low-enriched uranium hexafluoride (LE-UF6) are fed
through instrumented lines, blended together, and then stored as
product low-enriched uranium hexafluoride (PLE-UF6). At stan-
dard normal atmospheric pressure and temperature, uranium-
hexafluoride is nominally a solid. However, for the purpose of this
paper the uranium-hexafluoride was assumed gaseous. A combi-
nation of sensors is used to monitor the process, as shown in
Figure 1. All three legs are instrumented with flow meters, which
measure the gas flow velocity, and weight sensors that monitor the
instantaneous weight of the storage tanks. In addition, the high-
enriched leg and the product leg are instrumented with fissile
mass flow monitors (FMFM), which measure the mass flow of fis-

sile material and are based on principles similar to the ones devel-
oped in References 16 and 17. For this study, the facility was
modeled in MATLAB’s SIMULINK to generate simulation data
for modeling and testing. 

The simulated measurements from the three flow meters,
three weight sensors, and two FMFMs were used to create empir-
ical models that encompass normal operating conditions. For the
simulations, the velocities were varied to simulate actual opera-
tions, while the enrichments were held constant. A parameter was
used in the model to represent a scenario where there is an unau-
thorized removal of the high-enriched material just prior to the
blending tee. Because the simulated removal happens just prior to
the blending tee, its effects should only be seen in the PLE-UF6

sensors. Table 1 summarizes the instrumentation in the hypo-
thetical facility.

In real-world systems, sensor measurements are contami-
nated by three types of noise: process noise, sensor noise, and elec-
tronic noise. Process noise is noise that is common to all
redundant measurements, such as small perturbations about the
true velocity due to turbulent flow. Sensor noise and electronic
noise are independent noise sources, generally taken to be white,
Gaussian noise. 

Methodology

To simulate actual measurements, 1.0 percent process noise was
added to both the high- and low-enriched fluid velocities.
Additionally, independent measurement noise was added to each
sensor. The flow meters and weight sensors had 1.0 percent and
0.1 percent Gaussian noise of their maximum sensor reading,
respectively. Uncertainty in radiation sensors is not quantified the
same way as process sensors; however, for simplicity, the FMFM
were assumed to have 1.0 percent Gaussian noise also. Six scenarios
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Figure 1. Diagram of blending facility and instrumentation points



were simulated in which the magnitudes of the flow discrepancies
were varied. The first scenario was considered the normal case, in
which the measured and actual flows agree (no HE-UF6 bleed-
off ). The normal case scenario represents unfaulted data. The
remaining five scenarios consisted of discrepancies of 0.1 percent,
0.5 percent, 1.0 percent, 2.0 percent, and a 10.0 percent off-set.
The flow discrepancies represent the material removal from the
HE-UF6 leg. The simulated material removal occurs at the
2000th time step just after the HE-UF6 FMFM. Therefore the
effect of the removal is only present in the product-leg flow meter,
weight sensor, and the FMFM.

Four different models were created and evaluated. For each
model, the autoassociative kernel regression (AAKR) architecture

was used. For the first model, the AAKR model is built using only
data from the flow meters and weight sensors. The second model
uses the same data as the first model, with data reconciliation
techniques applied to the flow and weight sensors. For the third
model, no data reconciliation techniques are used but the FMFM
sensors are included. Finally, in the fourth model the FMFM sen-
sors are included and data reconciliation techniques are applied to
the flow and weight sensors. The objective of this study is to
quantify the sensitivity of the models to detect the differences
between measured mass flow rate and the actual mass flow rate
entering the blending tee. The AAKR model outputs are the cor-
rected sensor values predicted by the empirical model. 

Autoassociative Kernel Regression (AAKR)

An AAKR model is used to model the sensor relationships in the
blending process. The modeling method has been used for
nuclear power plant sensor calibration verification18 and is imple-
mented in a MATLAB Process and Equipment Monitoring
Toolbox.19 Normal operational data were used to create the non-
parametric model, while the faulted data was used to simulate the
anomalous behavior. The model is an error correcting technique

used to produce residuals between the corrected (predicted) val-
ues and measured values. The residuals are then examined to
detect anomalies and identify the cause of the anomalous opera-
tions. Figure 2 is a block diagram of the monitoring, detection
and identification system.

Since descriptions of AAKR do not readily appear in the
open literature, the following derivation is based upon multivari-
ate, inferential kernel regression as derived by Wand and Jones20

and described in Reference 21.
AAKR is a nonparametric, empirical modeling technique

that uses historical, fault-free observations to correct any errors
present in current observations. The exemplar or memory vectors
used to develop the empirical model are stored in a matrix X,
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Sensor Number Sensor Type

1 HE-UF6 weight sensor (g)

2 LE-UF6 weight sensor (g)

3 PLE-UF6 weight sensor (g)

4 HE-UF6 gas velocity (cm/s)

5 LE-UF6 gas velocity (cm/s)

6 PLE-UF6 gas velocity (cm/s)

7 Fissile Mass Flow Monitor on HE-UF6 leg

8 Fissile Mass Flow Monitor on PLE-UF6 leg

Table 1. Process instrumentation

Figure 2. Anomaly detection and identification diagram



where Xi, j is the ith observation of the jth variable. For nm observa-
tions of p process variables, this matrix can be written as:

Using this format, a query vector is represented by a 1xp vec-
tor of process variable measurements. This vector, x, can be writ-
ten as:

The corrected version of the input is calculated as a weighted
average of historical, error-free observations termed memory vec-
tors (Xi). The mathematical framework of this modeling tech-
nique is composed of three basic steps. First, the Euclidean
distance between a query vector and each of the memory vectors
is computed. The Euclidean distance equation for the ith memory
vector is:

(1)

For a single query vector, this calculation is repeated for each
of the nm memory vectors, resulting in an nmx1 matrix of dis-
tances: d.

Next, these distances are converted into similarity measures
or weights by evaluating the Gaussian kernel, expressed by:

(2)

Here, h is the kernel bandwidth and w are the weights for the
nm memory vectors.

Finally, these weights are used to form a weighted average of
the memory vectors according to:

(3)

If the scalar a is defined as the sum of the weights, i.e.,

(4)

then Equation (3) can be represented in a more compact matrix
notation as:

(5)

The parameters to be optimized in an AAKR model are the
memory matrix (X), the kernel bandwidth (h), and in some
instances the distance function.22 The developer must decide how
many and which vectors to include in the memory matrix and
how large to make the bandwidth, which indirectly controls how
many memory vectors are weighted heavily during prediction. 

Data Reconciliation

All measurements have some measurement error. Data reconcili-
ation attempts to reduce measurement errors in such a way to pre-
serve the laws of conservation of mass. This technique has been
used for nuclear power plant process monitoring.23-25 The follow-
ing derivation is described in References 23 and 25.

The restriction vector, f(x), and the vector of measured val-
ues, f(x), are related through:

(6)

where v is the corrective vector to be determined. The corrective
vector is applied to the measured values to force the measured val-
ues to follow conservation laws. For example, conservation of
mass states that the total inflow to the blending tee must equal to
the total outflow. This basic principle indicates that the sum of
the HE-UF6 leg flow and the LE-UF6 leg flow measurements
should equal the PLE-UF6 flow measurement. However, due to
measurement noise, it is highly unlikely that this exact relation-
ship is fulfilled. Data reconciliation determines the most likely
corrective vector, v, based on the known measurement standard
deviations that would force the conservation principle to be true.

The solution to Equation 6 requires v to be minimized,
whose solution can be shown through References 23 and 25 to
be:

(7)

where Sx is a matrix of known measurement standard deviations.
Equation 7 is then substituted into Equation 6, which then is the
solution used to reconcile the data values.

Results of Application

A MATLAB SIMULINK model was developed to simulate the
blending tee enrichment facility described. This model was used to
simulate both normal plant operations and anomalous operations
with HE-UF6 bleed-off. Data collected during the simulation is
used to develop an AAKR model to monitor the blend-down
process. The instantaneous weight sensor does not provide useful
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data for the AAKR because the instantaneous weight of a tank is
not correlated with any of the flow variables. Therefore, the deriv-
ative of the weight sensor data are approximated by the difference
between two consecutive observations to determine the instanta-
neous rate of change in weight, or mass flow rate. Four different
models are considered. The first and second model used only the
mass flow rate data and the gas velocity data. The mass flow rate
and the gas velocity should be related by the inverse of the gas den-
sity and the inverse of the pipe area. Therefore they essentially give
the same information, but because the data come from independ-
ent sensors they provide a level of redundancy. Model 2 differs
from model 1 because the data are preprocessed using the data rec-
onciliation technique described previously. Model 3 uses the same
sensors as model 1 with the addition of the two FMFM measure-
ments. Model 4 uses the eight sensors from Model 3, but as in 
model 2 the data are preprocessed with the data reconciliation
technique with the exception of the radiation sensors. 

Even though the instantaneous weight sensors are not well
suited for the AAKR method, they can provide useful informa-
tion. A bleed-off scenario will eventually be detected by tracking
the tank weight residual, i.e., the initial total weight of HE-UF6

and LE-UF6 less the current sum of the three weight measure-
ments. This residual will steadily increase as more HE-UF6 is bled
off. 

All four models have similar performance on the unfaulted
data. The unfaulted data performance describes the ability of the
model to predict, or confirm, the measured sensor values. Table 2
summarizes the average accuracy and average uncertainty of each
of the four models.

The model is able to predict the 1 percent process noise
because it is common in each sensor. However, the independent
measurement noise cannot be predicted. The accuracy is less than
1 percent because the model tends to average the sensor noise
through the inherent redundancy in the physical arrangement. 

Model 1 – No Radiation Sensors, No Data Reconciliation

For Model 1 (three flow meters and three mass flow rate sensors)
any HE-UF6 bleed-off would only be shown in the PLE-UF6

flow meter or mass flow rate change because the LE-UF6 flow sen-
sor is independent of the HE-UF6 flow sensors and the bleed-off
is assumed to occur downstream of the HE-UF6 flow sensor but
before the blending tee. Model 1 was not able to detect any of the

five fault cases: 0.1 percent, 0.5 percent, 1.0 percent, 2.0 percent,
and 10.0 percent bleed-off. Even the extreme 10 percent case was
not identifiable through visual inspection. The pipe cross sec-
tional area for the LE-UF6 leg is a factor of 4 larger than the pipe
cross-sectional area for the HE-UF6 leg. In addition, the gas veloc-
ity for the LE-UF6 leg is a factor of 8 larger than the HE-UF6 gas
velocity. This results in the LE-UF6 leg mass flow rate being
approximately a factor of 32 larger than the HE-UF6 leg; there-
fore, the PLE-UF6 flow sensor is dominated by the LE-UF6 flow
rate. Because the PLE-UF6 flow sensor is dominated by the LE-
UF6 flow rate, even a high HE-UF6 leg bleed-off is difficult to
detect in the PLE-UF6 sensor. Figure 3 shows the results for the
PLE-UF6 flow sensor for case 5 (10 percent bleed-off ). In the top
graph of Figure 3, both the predicted and measured values (solid
line and dashed line respectively) lie on top of each other making
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Figure 3. Detection results for PLE-UF6 flow sensor for Model 1 (10
percent bleed-off)

Model 1 Model 2 Model 3 Model 4

Accuracy 0.4502 0.2674 0.5762 0.4255

Uncertainty 1.5846 1.9444 2.1155 1.7315

Table 2. Unfaulted data performance (in percent of mean value)

Figure 4. Tank weight residuals for Model 1 (10 percent bleed-off)



them nearly indistinguishable. The lower graph of Figure 3 plots
the residual, which is the predicted minus the actual values. A
fault would be seen as a step change in the residual plot at the
time that the fault occurs. 

Even though the AAKR model is unable to detect the change
due to the HE-UF6 bleed-off, by tracking the instantaneous
weight of each tank and calculating the residual uranium mass, a
gradually growing residual indicates that some material is being
removed. Figure 4 shows the residuals for the normal case and the
10 percent bleed-off case. Ideally the normal case residuals would
all be zero, but measurement noise introduces some uncertainty.
The 10 percent bleed-off case clearly shows a growing residual,
but because the flow is dominated by the LE-UF6, it takes several
hours before a significant diversion from the normal case is seen;
the initial bleed-off happens at time=2,000 and then continually
bleeds-off until the end of the simulation. From Figure 4 there is
not a clear, instantaneous point where the residuals show a fault.
However, it is clear by about the 6,000th time step that the resid-
uals have deviated from their normal range (shown in the first
2,000 time steps). 

Model 2 – No Radiation Sensors, With Data Reconciliation

For Model 2, data reconciliation techniques were used to preprocess
the data, and the reconciled data were used to build an AAKR model.
This model quantifies the improvement due only to data reconcilia-
tion over the base model (Model 1). Reconciling the data forces the
data to follow known conservation laws. For these simulations, con-
servation of mass was employed, i.e., the total inlet flow into the
blending tee had to equal the total outlet flow of the blending tee.
Data reconciliation forces the conservation laws to hold true. An
adjustment factor is calculated and applied to the sensor values to force
the conservation law to be true. The adjustment factor is weighted
according to each sensor’s standard deviation and the gross error of the
sensor values with respect to the conservation law. Therefore, sensors
with smaller standard deviations are adjusted less than sensors with
larger standard deviations, and the total magnitude of these adjust-
ments is larger when the total error is larger. However, even employ-
ing data reconciliation Model 2 was also not able to detect any of the
bleed-off scenarios. Figure 5 shows the results for the PLE-UF6 flow
sensor for case 5 (10 percent bleed-off). Because data reconciliation
constrains the measurement values, the noise of the measurement is
reduced. Comparing the lower plot of Figure 3 with the lower plot of
Figure 5 shows that the range of the residuals has been reduced from
± 0.4 to about ±- 0.2. As with Figure 3, both the predicted and actual
measured values (solid line and dashed line, respectively), lie on top of
each other making them nearly indistinguishable

Because data reconciliation forces the conservation of mass
law, the weight tank residuals are all forced to zero. However,
tracking the changes in the correction factors serves the same pur-
pose as tracking the residuals in the weight sensors before using
data reconciliation. Even with data reconciliation, several hours
pass before the bleed-off can be detected visually. Figure 6 shows

the correction factors for the normal and 10 percent bleed-off
case. Comparing Figure 6 and Figure 4 shows that the deviation
is slightly easier to detect when using data reconciliation (Figure
6) because of the reduced noise.

Model 3 – With Radiation Sensors, No Data Reconciliation

For Model 3, the two FMFM radiation sensors were appended to
the data for Model 1. This model quantifies the improvement due
to incorporation of radiation sensors over the base model (Model 1).
Because the FMFMs are sensitive to the amount of Uranium-235
(235U), any bleed-off from the HE-UF6 should show a significant
change in the PLE-UF6 FMFM. However, the PLE-UF6 also has a
235U signal because of the LE-UF6 leg. The 235U content for the LE-
UF6 leg was assumed to be 0.7 percent, the composition of natural
uranium. While the 235U content of the LE-UF6 leg is a smaller per-
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Figure 5. Detection results for PLE-UF6 flow sensor for Model 2 (10
percent bleed-off)

Figure 6. Correction factor residuals for Model 2 (10 percent bleed-off)



cent, its large flow rate (compared to the HE-UF6 flow) represents a
sizable contribution. Figure 7 and Figure 8 show the monitoring
results for the 10 percent bleed-off in the PLE-UF6 flow sensor and
FMFM. In each figure there is a clear change in the residuals at the
2,000th time step, indicating some type of fault. For small enough
bleed-offs the change in residuals would not be significant enough
to visually determine a fault.

Plotting the weight residual yields the same result as seen in
Figure 4. Implementing radiation sensors into the AAKR model
gives a significant improvement in detection time, allowing for
near instantaneous visual detection, whereas in the previous
models instantaneous detection was not possible. 

Model 4 – With Radiation Sensors, With Data Reconciliation

For Model 4, the data are preprocessed as in Model 2 (with the
exception of the FMFMs), and all the sensors are used as in Model
3. This model quantifies the combined effect of data reconciliation
and incorporating radiation sensors over the base model (model
1). Figure 9 and Figure 10 show the monitoring results for the 10
percent bleed-off in the PLE-UF6 flow sensor and FMFM. In each
figure there is clearly a change in the residuals at the 2,000th time
step, indicating some type of fault. The detection characteristics
between Model 3 and Model 4 are very similar. As with Figure 3,
both the predicted and actual measured values (solid line and
dashed line respectively), lie on top of each other making them
nearly indistinguishable. However, the residuals show a clear
change. The plot of residuals in Figure 9 and Figure 10 does not
clearly show that incorporating radiation sensors with data recon-
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Figure 7. Detection results for PLE-UF6 flow sensor for Model 3 (10
percent bleed-off)

Figure 8. Detection results for PLE-UF6 FMFM sensor for Model 3
(10 percent bleed-off)

Figure 9. Detection results for PLE-UF6 flow sensor for Model 4 (10
percent bleed-off)

Figure 10. Detection results for PLE-UF6 FMFM sensor for Model 4
(10 percent bleed-off)



ciliation adds any benefit to only incorporating radiation sensors
(Figure 7 and Figure 8). In Figure 9 the predicted and actual sen-
sor values appear to be the same at each time step, but plotting the
residuals shows a clear trend change at the 2,000th time step. 

Because the improvements of Model 4 over Model 3 are not
visible simply by inspecting the residual plots, Table 3 summarizes
some of the model performance metrics. Two additional metrics
are shown in Table 3 that are output by MATLAB and provide
additional insight into the analyses of the data, the Error
Uncertainty Limit Monitoring (EULM) and the Sequential
Probability Ratio Test (SPRT).

With each metric, a lower value is desired. The accuracy is
expressed in terms of percent error, therefore a lower value indi-
cates less error. The analytical uncertainty is also expressed as a
percent, with a lower uncertainty corresponding to a higher pre-
cision. Auto-sensitivity is a measure of robustness, with a lower
value indicating a higher robustness. The cross-sensitivity meas-
ures the spillover effect. The EULM Detectability indicates the
smallest fault that is detectable using Error Uncertainty Limit
Monitoring, which monitors the uncertainty of the prediction
errors relative to some specified tolerance. Finally, the SPRT
Detectability measures the smallest process parameter change that
can be detected using the Sequential Probability Ratio Test. A
more complete explanation of these metrics can be found in
References 27, 28, and 29.

The SPRT Detectability for Model 4 is 1.0946 percent of
mean value. Therefore the smallest deviation the model can detect
is 1.1 percent. Because the PLE-UF6 FMFM is dominated by the
235U from the HE-UF6 leg, a 2 percent bleed-off is detectable.
Figure 11 shows the monitoring results for PLE-UF6 for the 2 per-
cent bleed-off case. At the 2,000th observation, there is a visible
step change in the residuals, which is indicative of the fault.

Conclusion
This paper presents the application of OLM techniques for safe-
guards monitoring. The results show that OLM techniques devel-
oped for sensor calibration monitoring are well suited for
enrichment process anomaly detection and are sensitive enough
to detect subtle changes in operations when coupled with nuclear
radiation measurements. Five scenarios were simulated examining
the effects of a 0.1 percent, 0.5 percent, 1.0 percent, 2.0 percent,
and 10.0 percent HE-UF6-leg bleed-off. Four different AAKR
models were created. The first model was a baseline model that
used only process sensors. The second model incorporated data
reconciliation techniques for noise reduction. The third model
incorporated radiation sensors. The fourth model incorporated
both radiation sensors and data reconciliation. The baseline
model (Model 1) and Model 2 were unable to detect any of the
simulated bleed-off scenarios. The models incorporating radia-
tion sensors (Model 3 and Model 4) were able to instantly detect
the 10 percent bleed-off scenarios. Both models were also able to
detect the 2 percent bleed-off scenario, but not the 1.0 percent,
0.5 percent, or 0.1 percent scenarios. The SPRT detectability
indicates that Model 3 would have been able to detect about a 1.6
percent bleed-off scenario while Model 4 would have been able to
detect about a 1.1 percent bleed-off scenario. Incorporating data
reconciliation techniques and radiation sensors improved the
detectability substantially over the baseline model. 

This work illustrated the usefulness of process monitoring
techniques for monitoring critical facilities. Future work to
improve anomaly detection includes optimizing model perform-
ance, developing a design for safeguards techniques that specify
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Model 3 Model 4

Accuracy (percent) 0.5762 0.4255

Uncertainty (percent) 2.1155 1.731525

Auto-sensitivity 0.6498 0.5325

Cross-sensitivity 0.1523 0.1293

EULM
Detectability 6.0722 4.3041

SPRT
Detectability 1.5819 1.0946

Table 3. Metrics of Model 3 and Model 4

Figure 11. Detection results for PLE-UF6 FMFM sensor for Model 4
(2 percent bleed-off)



optimal instrument placement, and evaluation of the techniques
for remote monitoring and tamper resistance. Future investiga-
tion would also incorporate non-traditional data that are indica-
tive of movements in a facility (such as vibration and motion
detection), and information pertinent to its physical characteris-
tics and surrounding environment. 
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Abstract
A Bayesian approach to estimate the radiation signature in vehi-
cle profiles is presented. In the setting of interest, the background
count rate, the profile length, and the background suppression
due to the vehicle all vary from vehicle to vehicle. The Bayesian
approach provides uncertainty estimates and an effective way to
enforce constraints, such as the radiation source signature being
nonnegative. Results of an experiment consisting of adding syn-
thetic signals into real signal-free profiles are included.

Introduction
An important aspect of U.S. homeland defense is scanning vehi-
cles for radioactive materials that could be used in a terrorist
attack. Vehicles entering the United States are currently being pas-
sively screened for gamma and neutron radiation. Each vehicle
slowly passes by a set of fixed radiation sensors, resulting in a pro-
file time-series measurement from each sensor. Various upgrades
to currently-deployed sensors are being considered, such as using
gamma detectors that have better energy resolution. The
cost/benefit of candidate upgrades should be compared to the
cost/benefit of optimized existing systems. Therefore, our goal
here is to consider possible improvements to current detection
algorithms in current sensors. To focus the discussion, we con-
sider only the low energy gamma detectors with attention to the
fact that the vehicle suppresses the natural background. Currently
implemented alarm rules ignore this background suppression.

We model the radiation measurement R of a vehicle as R = S
+U +B, where the S is the source term that we are interested in
detecting (that may be null), U is the suppression effect caused by
the shielding of the background by the vehicle, and B is the radi-
ation background, i.e., natural radiation. The goal in processing
measurements is to mitigate the impact of U and B, recovering S
from R with the highest possible fidelity. In the examples we con-
sider, R is measured each 0.1 second, thus resulting in a vehicle
profile to be analyzed.

The gamma radiation background signature B is noise from
the radioactivity of terrestrial materials (Geelhood et. al., 2004).
This leads to slow variation on a time scale much longer than
the vehicle measurement time. The slow background variation
can be modeled by a constant mean value, or a linear trend of
small absolute slope across the vehicle profile. The background

variation over the profile time scale is small compared to the
magnitude of the background, amounting to only a few percent
of the total. 

The source effect S is a measured response due to a radiation
source in the vehicle moving across the sensor’s field of view. It
should increase the count rate in several successive measurements
due to the nature of the observations. We refer to the measured
source term as the signal, i.e., the signal to be detected in the pres-
ence of these other effects.

Both the background B and the source S are counts of dis-
crete events over a time window; they are well modeled as arising
from a Poisson distribution having a time-varying mean. Our
strategy for mitigating this noise is to smooth the profile, with a
scheme that yields the best estimate of the underlying mean sig-
nal. Smoothing is an important issue that will be discussed below.

The suppression effect U refers to the shielding of the radia-
tion background by the vehicle, and is a significant reduction of
the natural background. Unlike the background, the suppression
effect can be characterized and mitigated without hardware or
shielding changes; this is our main theme here. We explore and
compare methods that attempt to factor out the background sig-
nal and the suppression effect, resulting in an estimate of the sig-
nal for classification.

A complicating issue is the presence of naturally occurring
radioactive materials (NORM), and their unknown source level.
Most materials are radioactive to some degree. Many cargo mate-
rials are of low radioactivity compared to background radiation,
and can be effectively thought of as a null signal. Other innocent
cargo materials have count rates that are considerably higher than
average background. Classic high-NORM sources are observed
from clay-based products (i.e., cat litter), natural biological con-
centration (i.e., bananas, high in potassium), and people having
undergone medical scans and treatments with active materials
(Kouzes, et al., 2004; Nuclear Reachback Reference Manual,
2006). These sources result in measurements that are unmistak-
ably positive. Smaller NORM sources will result in detected radi-
ation above background, but not sufficient to alarm. The data used
in this analysis are classified as “no signal,” because they did not
alarm in the current system; however some of these “no-alarm”
profiles appear to contain a small component of NORM signal.

Because our model of the various effects involves additive
effects, isolating the signal is a problem of decomposing these
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effects. There is not enough information to uniquely estimate
model parameters in an unconstrained, purely data-driven
approach. Bayesian approaches provide a natural framework in
this case, allowing information to be supplied by constraining the
solution with prior information known about the various com-
ponents. 

The following two sections include additional background
regarding the data profile and smoothing the profile, our general
approach to profile decomposition, including a brief description
of Bayesian methods, model components, priors, and parameter
estimation. The next two sections give example decomposition
results and results of a simulation experiment in which synthetic
signals were injected into hundreds of real profiles. The final sec-
tion summarizes and describes areas for future work.

The Data Profile and Smoothing
Though multiple sensors measure the vehicle, this discussion
focuses on processing data from a single arbitrarily chosen sensor.
The approach applies to all sensors; however only the gamma
counts exhibit significant suppression effects, and therefore, the
data analyzed here are the low-energy gamma counts from one
instrument panel. The raw profiles are a time series of radiation
counts from 0.1 second windows. Vehicles drive slowly past the
sensors, but in an unregulated manner so that the velocity is not
known or indeed even necessarily constant. We are forced to
assume however, that the time axis is linear; this noise source adds
nonnegligible variation around the average suppression effect.
Raw profiles may have quite different record sizes; the mean in
our sample set is approximately 250 measurements, though this
can range by approximately a factor of three in either direction,
with some very short and some very long profiles that are
removed for this analysis (Burr et. al., 2005 and 2006).

In this analysis, the profiles are smoothed and resampled
onto a standard grid. The smoothing is done by modeling the
profile with a Gaussian process model (GPM) (Jones, 1998),
which is then used to interpolate onto a regular grid of 100
points. In spirit, any smoother and interpolator can fulfill this
function, though the GPM is preferred to ad hoc schemes because
of its proper foundations and well-characterized properties. Spline
smoothers are another good choice (Burr et. al., 2005 and 2006).

The GPM method assumes a covariance of the raw profile
data points xi and xj given by, 

where the distance measure d is the linear (Euclidean) distance
between the measurements, and I is the indicator function valued
1 when the argument is true, zero otherwise. 

This formulation allows the control of the continuous
approximation. The β term scales the correlation distance; a larger

β implies less correlation between neighboring measurements.
The λz and λs precision terms correspond to the variability of the
data around the true underlying data mean. In this application, β
was selected to give a reasonable estimate, and λz and λs are set to
each account for half of the variability of the data, then re-esti-
mated from an initial model’s residual and variance to produce a
final answer. Once the GPM is established, the mean and variance
may be estimated for any time point. Presently, we are using only
the mean, though future work could take advantage of the vari-
ance as an uncertainty. Further, we anticipate choosing a degree of
smoothing that leads to the variance approximately equaling the
mean, which corresponds to Poisson variation around the mean.

Two examples of a raw profile and a smoothed and stan-
dardized profile are given in Figure 1. The first example shows a
profile with the suppression effect, the second profile shows what
is likely a NORM signal superimposed on the suppression effect.
The response units are intentionally omitted in all figures.

Profile Decomposition
The goal is to decompose the profile into its parts: the back-
ground and vehicle suppression effects (the null component), and
the remainder that can be taken to be the radiation signature (the
signal component). These effects are redundant, which raises a
model identifiability issue; alternative models should be con-
trolled with more information than simply modeling each term
using a general regression model. The signal component must be
represented by a very flexible model, because its behavior has very
little constraint beyond nonnegativity (though any known con-
straints may be added with an appropriate representation). A rea-
sonable model for this is a Gaussian mixture (kernel) model with
several components with fixed centers located across the profile.
The null component is taken to have a mean offset and a linear
term with a small absolute slope to represent the rough character-
istics of background at this time scale, and a non-zero component
of suppression effect templates, which is an ad hoc basis derived
from observed data.

A simple least-squares decomposition with the basis
described would yield results that are unstable with respect to the
desired decomposition. In the Bayesian framework, priors can
inform on the constrained values of the components of the
decomposition. There are various ways to generate the solution,
including constrained least-squares, or a general (e.g., simplex)
optimization of the likelihood formulation. We will use MCMC
(Markov Chain Monte Carlo, a technique for sampling from a
posterior distribution) sampling to estimate the posterior density
of the parameters, producing point estimates of parameters as well
as confidence bounds (Geyer, 1992). 
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Bayesian Background

Bayes’ rule follows from a simple rule of conditional probability
and allows one to calculate the probability of event B given that
event A has occurred, P(B|A), as P(B|A) = P(A|B) P(B)/P(A). The
rule has never been controversial, although particular applications
of it have led to debates regarding the relative merits of “frequen-
tist” (nonBayesian) versus “Bayesian” approaches. The key
Bayesian concept is to regard unknown parameters as random
variables and then express knowledge and uncertainty about these
parameters by choosing an appropriate prior probability distribu-
tion for them, Prior(parameters). Choosing a likelihood for the
data given these parameters, Likelihood(data|parameters), is com-
mon to all approaches. Bayesians then apply Bayes’ rule to com-
pute the posterior probability of the parameters given the prior

and the likelihood, Posterior(parameters) = Likelihood
(data|parameters) x Prior(parameters)/C, where C is a normaliza-
tion constant to make the posterior integrate to one.

In our context, the parameters are the coefficients for the
basis decomposition to be presented below, and the Bayesian
approach is useful because it allows us to impose constraints on
these parameters. Of course if the constraint is not valid because
it arises from bad assumptions, the approach is flawed. The some-
times subjective choice of the prior probability (perhaps allowing
only nonnegative values for example) for the parameters is the
source of much of the controversy. For example, a Bayesian
approach to sampling in safeguards was presented by Gorbatenko
et. al. (2006) in which the true defect probability pD (an unknown
parameter) among stored items was regarded as a random vari-

Journal of Nuclear Materials Management Spring 2009, Volume XXXVII, No. 316

Figure 1. Typical profiles, raw on top, smoothed and resampled on the bottom. The left shows a well-behaved suppression effect; the signal on
the right is an apparent NORM. The response units are intentionally omitted in all figures.



able. Because the choice of prior probability for pD is controver-
sial in this context, safeguards specialists typically prefer a fre-
quentist approach to sampling. It turns out in this case that, as
Gorbatenko et. al. (2006) showed, if one assumes a uniform prior
for pD on [0,1] to reflect maximal ignorance prior to sampling,
then the Bayesian approach is very nearly the same as the fre-
quentist approach. In general, Bayesian approaches can be con-
troversial, mostly arising from choice of the prior and
interpretations of subjective probabilities. Our prior probabilities
below reflect constraints such as certain parameters being non-
negative, and so are expected to be relatively noncontroversial.

Model Components

Figure 2 shows the components of the model. The suppression
effect components were computed from the data. Inspection of
the data reveals two distinct suppression effect profiles are cap-

tured by a characteristic form of “U” or “W.” These are identified
as profiles that have one minimum/no maxima, and two mini-
mum/one maximum, respectively. Profiles of these types represent
more than 95 percent of the 713 randomly selected non-alarming
profiles analyzed here (Burr et. al., 2005 and 2006). The two
components are generated by taking the median over the profiles
of the two groups. It may be that these two profile suppression
types represent the characteristic signatures of articulated vehicles’
and solid vehicles’ distinct suppression effect (Shokair et. al.,
2004a and 2004b).

The decomposition is performed by estimating scalar coeffi-
cients for each component, so that the scaled components sum to
the profile. The coefficients must be constrained to produce use-
ful results. 
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Figure 2. Basis components for the decomposition. The top frame shows the mean and linear components modeling the background, the
middle frame shows the Gaussian kernels modeling the signal, and the bottom frame shows the two empirically derived components for the
suppression effect.
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Model Priors

The most important aspect of the priors in this study is that they
constrain the component coefficients (weights) to be nonnegative
for the suppression, mean, and Gaussian kernel weights. This
means that only the suppression effect components can capture a
negative departure from the constant plus linear terms, and only
the Gaussian components can capture a generalized nonlinear
positive departure. It is primarily this nonnegativity constraint
that enables the simultaneous and stable estimation of the sup-
pression and signal components, though other aspects of the pri-
ors, detailed in Table 1, are also important. For example the
suppression effect coefficients should be near 1, the Gaussian
basis coefficients should have a weak preference to be small, and
the slope of the background should be small. 

The joint prior in the last row refers to an attempt to make
one suppression effect dominate. Because any given profile has a
fixed number of extrema, with most having either the character-
istic “U” or “W” shape, we prefer not to allow an arbitrary
weighted average of the “U” and “W” shapes to help explain the
profile’s shape. Without this joint effect the two suppression tem-
plates tend to share the contribution; with this they tend to
emphasize one or the other.

MCMC Parameter Estimation

We assume that the negative log likelihood of the data given a set
of coefficients θ is approximately proportional to the mean square
error of the constructed profile compared to the observed profile.
That is, we assume the likelihood is approximately Gaussian; pro-
vided the Poisson mean for the detected counts is sufficiently
large, this is a very good approximation. The posterior probabil-
ity is proportional to the likelihood L(D|θ) times the prior for θ,
Lθ = C x L(D|θ) x Prior (θ), where C is a normalization constant
that makes the posterior probability integrate to one. The value of
Lθ is thus computable for any proposed θ. The MCMC method
is a recipe for proposing a new trial θ vector based on the previ-

ous value, which is accepted with a probability depending on its
relative likelihood. The key feature of MCMC is that after a tran-
sient from the initial θ, it gives a sequence of draws from the joint
probability density function of θ. These draws can then be used
to locate the posterior mean or maximum value of the parameters,
and to estimate confidence bounds. 

Results of Decomposition
An Example Profile

MCMC is started from initial coefficients including: mean signal
for the offset, zero for the Gaussian kernels and linear basis coef-
ficients, and 0.5 for suppression coefficients. The MCMC chain
stabilizes on the scale of a few hundred draws, as can be seen in
Figure 3. Figure 4 shows characteristics of a decomposition. 

The reconstructed data are a very good fit to the original pro-
file, with confidence bounds tighter than can be displayed. The
decomposition itself is less certain, as the redundant factors trade-
off through MCMC chain. That is, even though the profile is
consistent with different combinations of model basis compo-
nents that all result in good reconstruction, characterizing these
trade-offs are important in the problem domain. This is the
advantage of the MCMC method, as it allows reconstruction of
confidence bands on the reconstructed radiation signal, as shown.
The confidence bounds are the confidence in the coefficient esti-
mates given the model, priors, and data. 

Note that any mismatch between the profile and the sup-
pression component is “explained” in the source terms. Therefore,
essentially all profiles will have a positive source estimate.
However, this positive source estimate can be treated empirically
by selecting thresholds above which the estimated source is
thought to be significant.

Conglomerate Results

Figure 5 shows the results of overlaid profile decompositions from
vehicle traces classified as no signal. Some radiation effects are
extracted, which must be taken to be NORM aspects of the sig-
nals. This is intended to show the summary results of the decom-
position in a qualitative manner, showing the general
characteristics of the signals and the estimated null and signal
components. 

Comparing to Mean Subtraction

An initial evaluation of the results is to compare the decomposi-
tion to a simple alternative. The most basic method for removing
the suppression effect is to simply subtract the mean profile from
each. The horizontal axis in the scatterplot in Figure 6 is the max-
imum value of each of the 713 profiles in that scheme; the verti-
cal axis is the maximum value of each corresponding
decomposition signal. The decomposition includes the (10,90)
confidence (10 percent and 90 percent quantiles) around each.
There is a clear correlation in the profiles that have a very high

Constant Γ(1,10-3)
Weak prior, tend
toward zero

Linear N(0,5) Absolute slope small

Gaussian Γ(1,10-4)
Weak prior, tend
toward zero

Suppression Γ(1,1)
Tends to zero, and not
>> 1

Sup.,joint Γ(5,5)(x1) x Γ(5,5)(x2)
Tends to make one
component near zero,
the other near 1.

Table 1. Prior probabilities on the component weight terms. The
Gamma distribution with parameters (a,b) is denoted Γ(a,b)
and the Gaussian distribution with mean ? and standard deviation σ
is denoted N(μ,σ).



maximum value (i.e., high NORM), with basic agreement in the
values, though the maximum value is consistently larger with the
decomposition method. 

Figure 7 shows a zoom in to the dense region of the plot
in Figure 6, where the estimated signal is small. There is clearly
a subset of cases where one method estimates the signal to be
low and the other estimates it to be higher. One feature of
interest is that the decomposition method never returns a sig-
nal less than zero. 

Without ground truth this is of only qualitative utility, but it
shows that the results of signal estimation are not unreasonable.
The next section investigates performance in a more quantitative
manner by injecting synthetic radiation signals into the profiles. 

Testing with Synthetic Signal Injection
This section will show a comparison of some alternative
approaches, injecting a signal into the profiles to produce a posi-

tive signature. A dataset is constructed containing both the given
(null) profiles and generated positive profiles. The positive pro-
files are the null profiles plus an injected signal term which has a
normal shape centered at 60, with a standard deviation of 10,
scaled to have a specified maximum value. This location would
correspond roughly to the vehicle cargo area, and the smooth pro-
file is consistent with many types of radiation signatures.

Each method’s performance is computed for a selection of
injected signal magnitudes. The performance is shown in Figure
8 (a typical receiver operating characteristic curve, ROC), which
shows the proportion of true negatives vs. the proportion of true
positives across threshold values that range from that which pro-
duces all negative classification to all positive classification. The
classification is based on whether any point in the profile exceeds
a given constant threshold, which is the same alarm rule that is
currently being used. Sequential tests that monitor for runs of
positive residuals should also be evaluated (Burr et. al., 2006) as
possible alarm criteria, but this is beyond our scope here. The bet-
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Figure 3. The MCMC chain for the example in Figure 4. The upper trace is the constant offset term, the lower trace is the linear term, the
other traces represent the various remaining components.



ter a method, the higher the curve at each point on the horizon-
tal axis; that is, for a given true positive fraction, the better
method has the larger true negative fraction. 

The methods associated with the different curves in Figure 8 are:
• decomposition, the method we have introduced. The

decomposition method is run on every positive and negative
profile independently. This is a field-computable estimate of
the source signal. Though the suppression profiles are drawn
from the sample data, these are highly averaged and con-
tribute little overfitting in this aspect; some additional details
are below. 

• mean0, a method in which the scalar mean of each negative
profile is subtracted from both the negative and correspon-
ding positive (signal injected) profile. This is a falsely opti-
mistic and not field-computable estimate because the null
mean of a positive profile is really unknown.

• mean0 and mean signal sub, the operation in mean0 aug-
mented by subtracting the mean suppression profile of all the

negatives from every profile, both negative and positive. This
is falsely optimistic as above, and the suppression profile is
computed from the data (as in the decomposition method). 

• pre-mean sub, a short window of 10 measurements preced-
ing each profile is used to estimate the background mean;
this mean is subtracted from the profile. This is a field-com-
putable estimate.

• pre-mean sub and mean signal sub, the pre-mean sub, with
the subtraction of the null mean profile, as an estimate of the
suppression effect. This is a slightly optimistic estimate
because the suppression effect for the positives is taken from
the pre-injection nulls. 

Overall, the methods are distinguished only for very small
signals, that is, where the injected signals are much less than the
background measurement. For signals greater than the magnitude
of the background, there is no ambiguity about positive versus
negative classification in any of the methods.
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Figure 4. Decomposition of a vehicle signature. The top frame is the vehicle signature (dots), with the mean, and 10/90 confidence bounds
superimposed (bounds are too tight to appear on this scale). Middle frame shows the mean suppression effects. The lower frame shows the
radiation signature signal estimated mean and 10/90 confidence bounds.



The best overall performer is the mean0 and mean signal
sub. We call this “best possible” because, by using information
from the construction of the signals that would be unknown in
real estimation, it shows an upper bound on performance of this
sort of model. This method pretends that we know the underly-
ing null signal mean corresponding to the positives, though of
course this is not possible. The next best performer is the decom-
position method, followed by other methods. 

The decomposition method here does use suppression pro-
files derived from the data, but this highly averaged estimate does
not contain significant information relevant to the construction
of the profiles. For example, in constructing alternative “U”-
shaped profiles, there are 171 examples. Comparing the mean of
100 alternative draws of 80 of these profiles, the coefficient of
variation, 100σ/μ is between 0.1 percent and 0.5 percent, indi-
cating that the calculation is not highly dependent on the specific
data used for the calculation of the suppression profile.

Conclusions
The decomposition of the smoothed profile method constructs a
useful estimate of the radiation signature in the low energy
gamma counts. This method is also computationally practical.
Developing the MCMC chain displayed takes less than one
minute on commodity hardware, and in an application context, a
shorter chain of just a few seconds would be necessary. 

In an installation, we envision a “first-cut” decision that puts
vehicles into categories of: definite signal, where the radiation
measurement shows an unmistakable signal, twice background or
larger; definite non-signal, where a stringent threshold is not
exceeded; and ambiguous signal. The decomposition approach
presented here is applicable for further analysis of those profiles in
the ambiguous signal category where a more refined analysis is
needed to characterize the profile in detail for closer scrutiny. 

We anticipate that any approach will suffer from mismatch
between any given profile and the suppression component. In this
approach, the mismatch is explained in the source terms.
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Figure 5. Conglomerate decomposition results. All of the 713 signals are plotted in the top frame, the suppression effects estimated from the
signal decompositions are in the second frame, and the estimated signals are shown in the bottom frame.



Therefore, all profiles examined to date have had a positive source
estimate. However, this positive source estimate can be treated
empirically by selecting thresholds above which the estimated
source is thought to be significant.

Next steps include:
• Refinement of the suppression effect terms. In this prelimi-

nary analysis, the effects were derived from (imperfect) data.
A more principled effect or set of effects should refine the
usefulness of this approach. A parameterized treatment per-
haps more consistent with the application context, as
opposed to simple linear contributions of kernels could be
useful. Additional information, perhaps using computer
models such as MCNP (Briesmeister, 2000) to allow cus-
tomization of suppression parameters observed vehicle char-
acteristics would obviously be helpful.

• Closely related to the above, the refinement of prior distri-
butions will increase the accuracy of the end results.

• Because the background is not highly variable over the pro-
files in this study, an additive suppression effect is tolerable.

However, the physics of the system instead suggest that the
effect should be modeled as multiplicative.

• This analysis treated a single sensor from an array that are
performing simultaneous measurement. The broader analy-
sis will treat multiple sensors as a single phenomena, as well
as multiple sensor types. This will involve deconvolution of
installed sensor transfer functions from an ideal signal, but
will add a significant capability of noise suppression. 

• Two stages were performed: smoothing and decomposition.
Both of these operations could be integrated into a single
method, simultaneously determining smoothing parameters
and decomposition parameters with the MCMC sampling.

• Additional information can be taken from the associated
uncertainty bounds, and fully exploiting the uncertainty esti-
mates through the smoothing and decomposition procedures
is a topic for further study. 

• At various stages, we assume either Gaussian or Poisson like-
lihoods, which has been informally checked using plots and
evaluation of the variance to mean ratio; however, this needs
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Figure 6. Scatterplot of the maximum value of each estimated residual signal with two methods: horizontal axis is subtracting the global mean
from each, vertical axis is estimating the residual (radiation effect) with the decomposition method. The decomposition method also shows
(10,90) confidence region for each.



further empirical evaluation (Burr et. al., 2005 and 2006).
• The injected signal had a normal shape centered at 60, with

a standard deviation of 10, scaled to have a specified maxi-
mum value. Although this location corresponds roughly to
the vehicle cargo area, and the smooth profile is consistent
with many types of radiation signatures, clearly the signal
model should be extended. This is a possible application for
computer MCNP modeling (Briesmeister, 2000) to comple-
ment physical tests.
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Figure 8. ROC curves for the various methods, at different levels of injected signal. The ROC plots show the fraction of true negative vs.
fraction of true positive across an implicit threshold range. The different axes correspond to different magnitudes of injected signal.



What a privilege and honor to be asked to
contribute to the Journal of Nuclear
Materials Management. I have been a
member  of INMM since 1972, which
makes me a newcomer by many standards,
but nevertheless I have seen the Institute
grow in national and international stature,
in membership, in technical papers to
include content and number of papers, in
outreach programs, and in general nuclear
materials management influence. 

What amazes and delights me the
most are the new and exciting directions
the INMM has taken. One direction that
particularly pleases me is the increased
participation of women in the INMM.
One reason for this growth is, of course,
more women are in the work force now
than there were fifty years ago. Another
reason is more women are choosing
careers in science, engineering, mathemat-
ics, accounting, and other disciplines per-
tinent to nuclear materials control than
there were fifty years ago. The INMM can
be proud of its early realization that this
new stratum of “woman power” could and
should be tapped and incorporated into
the Institute. Women are now contribut-
ing in all phases of the workings of the
INMM. They’re officers, Executive
Committee members, standing and ad
hoc committee chairs, and all manner of

responsibility. Their involvement is also
felt in INMM’s many chapters. Their tal-
ents and contributions have been and con-
tinue to be vital to the excellent
management and growth of the INMM.  

Another direction that is pleasantly
overwhelming for me to see and experi-
ence is the increasing number of mar-
velous young men and women who are
responding to the nuclear materials man-
agement call. For example, in the 1970s
our student paper competition program
was going strong, but it lacked interested
students because, for the most part, their
advisors did not encourage them to partic-
ipate.  At that time the nuclear industry
was not high on the list of suitable and
important topics in academia and we had
difficulty in drawing student competitors.
The INMM prevailed, I’m proud to say,
so that to date at the INMM annual
meeting, we have as many as thirty-two
student papers, some of which are pre-
sented by students competing for the J. D.
Williams Student Paper Award and some
presented by students who have been
encouraged by their advisor to participate
in the INMM Technical Program. This
growth in participation is due in large part
to the enthusiasm and perseverance of
Mark Killinger, the INMM’s first recipient
of a Student Paper Award in 1979 and

Mark Leek, chair of the Student Activity
Committee.

I could go on forever about the won-
derful growth paths I have seen since 1972
such as (listed in no particular order) the
student member mentor program; the for-
mation and organization of six technical
divisions; the continual improvement in
the exhibits especially the superb exhibit
dedicated to the students during the 2008
INMM annual meeting; the increase in
the number of sustaining members; the
always helpful and courteous headquarters
staff; the twenty chapters, which include
eight international chapters and six stu-
dent chapters, and so many more.

The INMM holds a dear and warm
place in my heart for assisting me to
mature in my career, introducing me to
many influential people in the several and
diverse fields which comprise nuclear
materials management, providing some
beautiful and professionally friendly venues
for our meetings, and always lending a
helping hand when requested. As the
INMM Mission Statement says, inter alia,
“The Institute of Nuclear Materials
Management was formed in 1958 to
encourage: The advancement of nuclear
materials management in all its aspects.”
The INMM does exactly that.

Fifty Years of INMM

50th Anniversary Remembrances

Yvonne M. Ferris
INMM President, 1985–1986
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BNS Wins £13 million Contract

for Dounreay Decommissioning

BNS Nuclear Services has won a £13 mil-
lion open book contract from Dounreay
Site Restoration Ltd. (DSRL) to provide
maintenance and operations services in
support of the decommissioning the site’s
two fast reactors. The contract is
expected to run for three years, with an
option to extend by up to two years.

Until now, four different companies
have provided maintenance and opera-
tions support at the reactors. The appoint-
ment of BNS will bring together under
one management the work previously
done by the four companies.

Central to this challenge is the com-
bining of the two reactor workforces who
each have specialist knowledge. This
means not only sharing knowledge and
skills built up over the years, but also man-
aging the inevitable culture change. At
the heart of this process is the develop-
ment and implementation of a common
electronic works control system. The
safety issues surrounding this are critical,
and BNS is expected to develop an inte-
grated planning system for the reactors’
maintenance and operations activities.
Once up and running, the system should
be able to give performance statistics, such
as how long individual maintenance tasks
are likely to take, further aiding task plan-
ning. With just one contractor responsi-
ble for the planning process, it is expected
that DRSL will benefit from the
economies of scale that should flow when
both operations and maintenance tasks are
combined by the same team.

NNSA Transfers Radiation

Detection System at Port of Antwerp

to Belgium Customs Partnership Aimed
at Detecting Smuggled Nuclear Material 
The U.S. National Nuclear Security
Administration (NNSA) joined the
Federal Public Service of Finance of the
Kingdom of Belgium Customs and Excise
Administration (C&EA) in February to
celebrate two successful years of radiation
detection operations at the Port of
Antwerp. In a ceremonial transfer at the

Belgian Consulate, NNSA entrusted all of
the Port of Antwerp’s radiation detection
equipment and property to the C&EA
and Antwerp Port Authority. 

The Port of Antwerp, located in
northern Belgium on the North Sea, is
one of the largest ports in Europe in terms
of container traffic volume. Under
NNSA’s Megaports Initiative, radiation
detection equipment was installed on both
the right and left banks of the port at the
gates to ten container terminals and other
strategic exit/entry points. The equipment
installed scans import, export, and rail
container traffic at the port. The C&EA
monitors the traffic from two central
alarm stations and is responsible for radia-
tion alarm analysis and response. Under a
special cost-sharing arrangement, C&EA
contributed to the detection efforts by
funding the installation of the radiation
detection equipment at two of the termi-
nals. 

NNSA cooperation with Belgium in
radiation detection efforts at the Port of
Antwerp began in 2004. The first termi-
nals were commissioned in 2007 and the
last two terminals in October 2008.
NNSA continues to work with Belgium to
augment the system with state-of-the-art
equipment. NNSA and the government of
Belgium are also working together and
sharing costs on the installation of radia-
tion detection equipment at the Port of
Zeebrugge. The installation of equipment
at both ports supports the U.S. Customs
and Border Protection’s Container
Security Initiative, which targets and pre-
screens maritime cargo containers des-
tined for U.S. ports. 

NNSA has also partnered with
Belgium on export controls, with the
International Nonproliferation Export
Control Program (INECP) demonstrating
its Commodity Identification Training
(CIT) to an EU-wide audience in Brussels
in October 2007. NNSA also provided its
CIT Instructor Training—a “train the
trainer” course—to Belgian customs per-
sonnel. This year, Belgium will launch its
own CIT program.

NRC Issues Safety Evaluation

Report for Three Mile Island Nuclear

Plant License Renewal Application

The U.S. Nuclear Regulatory Commission
staff in March issued its safety evaluation
report (SER) with open items for the pro-
posed renewal of the operating license for
the Three Mile Island Nuclear Station,
Unit 1 (TMI-1), located in Middletown,
Pennsylvania USA. The report documents
the interim results of the NRC staff ’s
review of the license renewal application
and site audits of TMI-1’s aging manage-
ment programs to address the safety of
plant operations during the period of
extended operations. Overall, the results
show that the applicant has identified
actions that have been or will be taken to
manage the effects of aging in the appro-
priate safety systems, structures and com-
ponents of the plant and that their
functions will be maintained during the
period of extended operation. 

Exelon Generation Group, LLC,
owner and operator (formerly AmerGen
Energy Company, LLC.), submitted an
application to the NRC on January 8,
2008, to extend the TMI-1 license by
twenty years. Under NRC regulations, the
original operating license for a nuclear
power plant has a term of forty years. The
license may be renewed for up to an addi-
tional twenty years if NRC requirements
are met. Therefore, if approved, the cur-
rent operating license for TMI-1, which
expires on April 19, 2014, would be
extended until 2034.

In a letter dated March 13, Brian
Holian, director of the Office of Nuclear
Reactor Regulation’s Division of License
Renewal, provided Exelon with the SER.
The SER will be available on the NRC’s
Web site. Issuance of a SER is a typical
milestone in a license renewal review.

The NRC staff will present its final
conclusions on the license renewal appli-
cation in an update to this SER which is
estimated to be issued in July 2009.

The SER and the license renewal
application have also been provided to the
NRC’s Advisory Committee on Reactor
Safeguards (ACRS), an independent body

Industry News
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of experts that advises the NRC on reactor
safety matters. An ACRS subcommittee is
expected to discuss the SER during a
meeting on April 1. The meeting, which
will take place at NRC Headquarters in
Rockville, Md., USA will be open to the
public. The full ACRS will later issue a
report discussing the results of its review.

Refurbished W76 Warhead Enters

U.S. Nuclear Weapon Stockpile 

The first refurbished W76 nuclear warhead
has been accepted into the U.S. nuclear
weapon stockpile by the Navy, according
to a senior official at the Department of
Energy’s National Nuclear Security
Administration (NNSA). This culminates
a ten-year effort to ensure that the aging
warhead, already years beyond its original
intended life, can continue to be a reliable
part of the U.S. nuclear deterrent. 

Most nuclear weapons in the U.S.
stockpile were produced thirty to forty
years ago, and no new nuclear weapons
have been produced since the end of the
Cold War. Integrated into the Department
of the Navy’s Trident II D5 Strategic
Weapon System, the first W76 entered the
stockpile in 1978.

NNSA must use science-based
research and development to extend the
lifetime of the current weapons in the
stockpile. By extending the life, or time
that a weapon can safely and reliably
remain in the stockpile without having to
be replaced or removed, of a current
weapon, NNSA is able to maintain a cred-
ible nuclear deterrent without producing
new weapons or conducting new under-
ground nuclear tests.

NNSA Ships Additional Surplus

Special Nuclear Material From

Livermore Shipment Reduces High-

security Material Onsite by an

Additional 20 Percent

The U.S. National Nuclear Security
Administration (NNSA) announced in
February that more than 55 percent of the
plutonium and uranium materials stored at
the Lawrence Livermore National
Laboratory (LLNL) in California have been
relocated. The material was moved to the
Savannah River site in South Carolina and
the Y-12 National Security Complex in
Oak Ridge, Tennessee, under high security. 

The shipment is part of NNSA’s plan
to remove high-security nuclear material

from LLNL by 2012. This is the seventh
shipment to leave LLNL since the de-
inventory project was initiated.

As part of its Complex
Transformation, NNSA plans to consoli-
date nuclear materials at five sites by 2012,
with significantly reduced square footage
at those sites by 2017. This will further
improve security and reduce security costs
and is part of NNSA’s overall effort to
transform the Cold War era nuclear
weapons complex into a twenty-first cen-
tury nuclear security enterprise. The latest
shipment from LLNL was completed in
full compliance with existing safety and
environmental laws and procedures.

Materials must be processed to stable
forms and repackaged to meet federal
shipping and storage requirements prior to
shipment. The original date to remove all
high-security material from LLNL, based
on equipment capability and capacity, was
2014. NNSA has developed a timeline to
remove this material as early as possible,
accelerating the target completion date to
2012. To reach this goal, NNSA is
installing extra equipment to increase
capacity.
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