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Abstract 
 

The European Commission Directorate-General for Energy performs sets of conformity 

assessment activities in the form of accountancy and physical verifications in installations using 

nuclear material. The on-site inspection process makes extensive use of independent 

measurement systems to determine the flows, quantities or characteristics of nuclear material. 

The deployment of an increasing number of unattended systems associated with remote data 

transmission offers an opportunity to improve inspection effectiveness and efficiency by 

systematic data analysis. 

 

At present, dedicated IT applications are used to evaluate acquired measurement data. The 

results of their evaluations, being reported by individual inspection, are only representative of 

a situation over a limited period in time. However, Euratom Safeguards long-term strategy 

foresees an assessment of risk based on the results of past verification activities and the 

evaluation of confidence factors capturing limits and uncertainties encountered during the 

process. 

 

The evaluation of measurement data can directly support those two concepts by including, for 

instance, a deeper analysis of historical trends or an automated assessment of the measurement 

systems performances. To this end, the development of dedicated analysis packages associated 

with a centralised measurement data repository was initiated.   

   

The objective is to provide inspectors with data analysis tools that combine robust statistical 

techniques and time series analysis aimed to detect anomalous patterns in the measurements. 

The prompt detection of anomalies such as structural breaks or outliers together with a suitable 

visualisation of these patterns may indeed support the identification of discrepancies in 

inspections’ findings. In this paper, we describe an exploratory study of possible analysis tools 

applied to Non-Destructive Assay data designed to provide a solid basis for the development of 

a structured and sound statistical framework for the analysis of inspections’ results.  
 
  



1. Context  

 
The Euratom Treaty laid down the foundation for the peaceful use of nuclear materials and 

technologies in Member States of the European Union (EU MS). The Treaty established a 

nuclear material supervision system, known as “Euratom safeguards” to ensure the non-

diversion of nuclear material from their intended uses and compliance with safeguards 

obligations under international agreements. 

The European Commission is entrusted with the responsibility of administrating Euratom 

safeguards and the Directorate-General for Energy, in particular the Directorate E (EC ENER 

E) implements associated supervision activities by a combination of material accountancy 

measures and physical verifications.  

On-site, Euratom inspectors verify a nuclear facility operator’s declarations related to the flows, 

quantities and characteristics of nuclear materials with independent findings, these being 

supported by the analysis of data generated by destructive analysis (DA), containment and 

surveillance systems and lastly data generated by non-destructive assays (NDA), which are the 

subject of this paper.  

The NDA systems are either operated in attended mode or installed as unattended monitoring 

equipment. In some cases, NDA systems are coupled with remote data transmission, which 

offers advantages in terms of implementation of safeguards in nuclear facilities. It allows for a 

reduction of the level of intrusiveness in the facility operations while increasing the verification 

coverage, shifting part of the inspection effort from on-site activities to off-site data evaluation. 

 

2. Problem statement  
 

Inspectors typically evaluate NDA results on-site by means of dedicated algorithms running in 

parallel to the instrument acquisition software. The results of their evaluation are reported by 

individual inspection and therefore representative of the measurements trend over a limited 

period in time. In addition, the raw data remain usually on-site and are unavailable for historical 

analysis or re-evaluation at Euratom Headquarters. Therefore, the conclusion drawn for an 

inspection tends to not take into consideration trend analysis or cross-cutting different sources 

of data. 

The possibility to perform statistical analysis, in an automated, structured and principled 

manner and possibly in connection with other existing data handling structures was a clear need 

identified by Euratom inspectors. It will allow: 

- An analysis of the historical trends to complement the data evaluation, for example by 

definition of validation and decision thresholds based on past results. 

- A dynamic assessment of the performance of the measurement system, allowing for 

maintenance planning and reducing reaction times in case of failures. 

On the long term, these two concepts will contribute to an enhancement of the inspection 

approach. By combining the use of past verification results and the definition of levels of 

confidence capturing the uncertainties and limits encountered during the process, inspectors 

will be able to modulate future verification activities more efficiently.  

To respond to these needs, the EC ENER E started the implementation of a centralised 

repository of measurement data coupled with the statistical evaluation of historical results. The 

European Commission Joint Research Centre (EC JRC) is developing the approach to the 

statistical analysis based on anonymised datasets of real inspection data.  

 

The following section presents a proposal for the statistical analysis approach. The analysis is 

based on two anonymised datasets of passive neutron coincidence measurements with different 

features:  



- Use case 1 contains measurement of Plutonium oxide cans with similar characteristics 

in both content and form. The measurements are taken in unattended mode in 

combination with a High Purity Germanium Detector to evaluate the isotopic 

composition of the items. 

- Use case 2 contains measurements of impure Plutonium bearings items. With respect to 

the previous use case, the impurities as well as the packaging of the material add 

inhomogeneity that affects the measurement uncertainty. The measurements are taken 

in attended mode during yearly inspection, thus a lower number of measurement points 

are available for the statistical analysis with respect to use case 1. 

Results are presented in terms of potential outliers meaning measurements evaluated as being 

not coherent with the operator declarations. These are reported along with the outliers identified 

by inspectors based on their classical evaluation approach to provide a validation of the method 

proposed. Finally, section 4 describes modalities for embedding the method in the operation 

workflow of inspections as well as future applications of the statistical analysis.   

 

3. The analytical approach 

 
This section describes the analytical approach based on 3-steps for the analysis of NDA data. 

The goal is to provide inspectors with data analysis tools aimed at detecting anomalous patterns 

in NDA measurements, also in relation to the operator’s declaration. Considering a simulated 

sequence 𝑌1, … , 𝑌𝑁 of values for a generic variable 𝑌, Figure 1 shows examples of the 

anomalous patterns we pursue to identify. A level shift is a “jump” in the average level of the 

historical values of a measured variable. An outlier, instead, is a single observation not in line 

with the rest of the data. The prompt detection of such anomalies together with a suitable 

visualisation of these patterns may support the identification of discrepancies in inspections’ 

findings. Further, if required, it enables corrective actions early on in the verification process 

of nuclear materials.  

The analytical procedure is iterative in nature. When a new set of NDA measurements is 

available (i.e. at the end of an inspection period), the proposed 3-steps approach will make use 

of past and current data concerning: (i) the Assayed Mass; (ii) the uncertainty of the Assayed 

Mass obtained through propagation of uncertainties due to counting statistics and calibration 

parameters (also known as bottom-up approach); and (iii) the Declared Mass. 

It is important to remark that, even if the values of NDA measures have a temporal order, they 

are not analysed as time series because the time interval between measures is not constant. The 

quantitative methods proposed hereafter are based on time series analysis procedures with 

adaptations to the particular context. Moreover, the possible presence of outliers in the data 

requires the adoption of “robust” statistical methods, i.e. methods that allow obtaining estimates 

that are not affected by anomalous observations (the outliers) or other deviations from model 

assumptions. For a detailed and comprehensive description of robust statistics, see (inter alia) 

Maronna et al. (2019). 

In the following sections, we describe the rationale and the expected outcome of each step. The 

three steps represent an exploratory study of possible analytical tools applied to NDA data 

designed to provide a solid basis for the development of a structured and sound statistical 

framework for the analysis of inspections’ outcomes. 

 



 
Figure 1. Example of simulated data showing the anomalous patterns that the presented 

approach aims to identify. 

 

3.1. Step 1: Analysis of the ratio between the assayed mass and its uncertainty 

 

The first variable of interest is the ratio between the Assayed Mass and its uncertainty obtained 

through a bottom-up approach. The assumption is that the proportion between the uncertainty 

and the measure is approximately constant over time. This means that the historical evolution 

of the ratios between each measure and its corresponding uncertainty should lie approximately 

on a line parallel to the x-axis, representing the average level of the ratios. In this context, an 

outlier is an Assayed Mass whose uncertainty is not coherent with the rest of measurements 

while a level shift is a structural break in the relation between the measured mass and its 

uncertainty. 

In this step of the analysis, we assume that: 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

𝐴𝑠𝑠𝑎𝑦𝑒𝑑 𝑀𝑎𝑠𝑠
 ~ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 →  

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

𝐴𝑠𝑠𝑎𝑦𝑒𝑑 𝑀𝑎𝑠𝑠
= 𝛼 ± 𝜀 

Where 𝛼 represents the average level of the ratios, and 𝜀 is the error term. Therefore, when a 

new set of measurements is available, the first step of the statistical analysis estimates the 

parameters in the previous expression in a robust way to identify potential outliers and level 

shifts. The method adopted for the estimation is based on the robust monitoring of time series 

described in Rousseeuw et al. (2019). Even if conceived for time series analysis, this method 

can be easily adapted to the context of this paper. Involving only the Assayed Mass and its 

associated uncertainty obtained through a bottom-up approach, the outcome of this step 

provides an additional validation criterion for the measurement. 

Figure 2 shows an example of the outcome of applying this step on use case 1 (Plutonium oxide 

cans measured in unattended mode). The analysis identifies several potential outliers, 

highlighted with red crosses, and a significant level shift in the average pattern of the measures.  

A closer look at the instrument performance revealed that in the month of May 2016 the 

operator modified a parameter in the measurement sequence without notification and the 

parameters of the algorithm triggering the data acquisition were not able to handle correctly the 

changes.  



The impact of this modification led to a slightly higher estimation of the uncertainty of the 

assayed mass from 1.10% to 1.30% on average (one relative standard deviation, expressed in 

percentage).  

Therefore, the statistical analysis proves to be able to detect changes in the measurement 

conditions, providing a timely indication for inspectors and technicians to plan for any remedial 

actions (i.e. an instrument’s maintenance operation).   

 
Figure 2. Outcome of the first step of the analysis on use case 1 (Pu oxide cans measured in 

unattended mode). The level shift indicates a structural break in the relation between the 

measured mass and its uncertainty, while the red crosses represent potential outliers (i.e. 

assayed masses whose uncertainties are not coherent with the rest of measurements).  

The assumption of a constant relation between mass and uncertainty for a given instrument does 

not always reflect the reality of the measurement conditions. This especially holds when an 

instrument is used to measure a wide range of masses. In this case, the uncertainty is affected 

by the mass for both the counting statistics (higher masses generally produce higher count 

rates), and for the calibration parameters. This results in a higher dispersion of the points around 

the average value 𝛼 and a higher error term 𝜀 which, in turn, leads to a less accurate definition 

of outliers and more potential missed ‘alarms’ (false negatives). Nevertheless, the advantage of 

the proposed approach is that it can be applied in the exact same way for any type of 

measurement or instrument, making it a robust and consistent approach for any safeguards 

measures. On the contrary, the adaptation of the approach for any individual function 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

𝐴𝑠𝑠𝑎𝑦𝑒𝑑 𝑀𝑎𝑠𝑠
 ~ 𝑓(𝐴𝑠𝑠𝑎𝑦𝑒𝑑 𝑀𝑎𝑠𝑠) ± 𝜀 

would not only complicate the approach, but also make it extremely sensitive to changes in the 

measurement conditions and thus subject to frequent adjustments.  

 

 

 

 

 

 



3.2. Step 2: Identification of systematic bias and outliers in the sequence of relative 

Operator-Inspector differences  

 

The second variable of interest is the relative Operator-Inspector Difference, defined as: 

𝑅𝑂𝐼𝐷 =  
𝐴𝑠𝑠𝑎𝑦𝑒𝑑 𝑀𝑎𝑠𝑠 − 𝐷𝑒𝑐𝑙𝑎𝑟𝑒𝑑 𝑀𝑎𝑠𝑠

𝐷𝑒𝑐𝑙𝑎𝑟𝑒𝑑 𝑀𝑎𝑠𝑠
 

This variable is also expected to be approximately constant over time, that is: 

𝑅𝑂𝐼𝐷 = 𝛽 ± 𝜖 

where 𝛽 represents the average level of the ROIDs, and 𝜖 is the error term. This expression 

being very similar to the one introduced in the previous section, it will be analysed through the 

same statistical approach. In addition to the identification of potential outliers and level shifts, 

in this case we are also interested in a careful assessment of the coefficient 𝛽. This represents 

the average relative distance between the operator and inspector measurements. An estimate of 

𝛽 significantly different from zero suggests there is systematic deviation between the two 

measures.  

Figure 3 presents data from use case 2 (impure Pu items measured in attended mode) where the 

estimate of 𝛽 appears to be not statistically different from zero. Figure 4 shows an example 

obtained with use case 1 (Pu oxide cans measured in unattended mode) where a systematic bias 

between the operator and the inspector measurements is visible. Finally, Figure 5 presents an 

additional example from use case 1 where the bias, in addition to being systematic, also 

increases significantly over time. In all three cases, several potential outliers are identified.  

 
Figure 3. Outcome of the second step of the analysis on use case 2 (impure Pu items measured 

in attended mode). The estimate of 𝛽 represents the average value of the Relative Operator-

Inspector Difference (ROID) expressed in percentage that appears to be not statistically 

different from zero. The red crosses indicate potential outliers whose ROIDs are not coherent 

with the rest of the measurements.  

The presence of a systematic bias between the verification measurements and the operator 

declarations is undesirable, but sometimes it is quite unavoidable. For example, in an 

unattended measurement station it can be due to an erroneous background measured when the 

nuclear material bearing item is too close to the instrument. The bias could be reduced by a 



change in the measurement sequence, but that may be very difficult to implement for the 

operator. In such cases, once the bias is recognised, understood and accepted, it is important to 

take it into account in the following evaluation of the measurement.  
 

 
Figure 4. Outcome of the second step of the analysis on a subset of use case 1 (Pu oxide cans 

measured in unattended mode). The y-axis represents the Relative Operator-Inspector 

Difference (ROID) expressed in percentage. Here a systematic bias between the operator and 

the inspector measurements is visible. The red crosses indicate potential outliers. 

 
Figure 5. Outcome of the second step of the analysis on a subset of use case 1 (Pu oxide cans 

measured in unattended mode). The y-axis represents the Relative Operator-Inspector 

Difference (ROID) expressed in percentage. Here the bias is different from zero and also 

presents a level shift. The red crosses indicate potential outliers. 

 



3.3. Step 3: Direct comparison of the Assayed and the Declared Mass of each item 

 

Once the coherence of the uncertainty estimation is analysed (first step) and any systematic 

biases are identified (second step), the Assayed and Declared Masses are compared in the third 

step to verify if they are statistically different or not. 

Assuming that in the previous step no systematic bias was detected (i.e. 𝛽 = 0), if the Assayed 

Mass 𝐴𝑀𝑖 and the Declared Mass 𝐷𝑀𝑖 of an item 𝑖 are not statistically different we have: 

𝐸(𝑂𝐼𝐷𝑖) = 𝐸(𝐷𝑀𝑖 − 𝐴𝑀𝑖) = 0           𝑉𝑎𝑟(𝑂𝐼𝐷𝑖) = 𝑉𝑎𝑟(𝐷𝑀𝑖 − 𝐴𝑀𝑖) = 𝜎𝑖,𝐷𝑀
2 + 𝜎𝑖,𝐴𝑀

2  

where 𝑂𝐼𝐷 is for Operator-Inspector Difference. The variance of 𝐴𝑀𝑖 is given by the bottom-

up estimation of the uncertainty, whereas the variance of 𝐷𝑀𝑖 is unknown. The International 

Target Values (ITV) provide cut-off values 𝜂𝐼𝑇𝑉 such that 𝜎𝑖,𝐷𝑀 ≤ 𝜂𝐼𝑇𝑉  × 𝐷𝑀𝑖. Therefore, the 

cut-off multiplied by 𝐷𝑀𝑖 represents the maximum value of the uncertainty of the Declared 

Mass. Along the same line, we can define:  

𝜎𝑖,𝐷𝑀
2 = 𝜂𝑖

2 × 𝐷𝑀𝑖
2 

and obtain: 

𝑉𝑎𝑟(𝑂𝐼𝐷𝑖) = 𝜂𝑖
2𝐷𝑀𝑖

2 + 𝜎𝑖,𝐴𝑀
2  

If we base the identification of outliers on the classical 𝑘𝜎 rule, where the value of k depends 

on the desired significance level for identifying an outlier, then an 𝑂𝐼𝐷 is an outlier if the 

distance from its expected value is larger (in absolute value) than 𝑘 times its standard deviation. 

Therefore an 𝑂𝐼𝐷 is NOT an outlier if: 

|𝑂𝐼𝐷𝑖 − 𝐸(𝑂𝐼𝐷𝑖)| ≤ 𝑘 × 𝜎𝑂𝐼𝐷𝑖
 

that, considering the previous expression for the variance of 𝑂𝐼𝐷𝑖, becomes: 

|𝑂𝐼𝐷𝑖 − 𝐸(𝑂𝐼𝐷𝑖)| ≤ 𝑘√𝜂𝑖
2𝐷𝑀𝑖

2 + 𝜎𝑖,𝐴𝑀
2 . 

This condition is satisfied whenever 

𝜂𝑖 ≥
1

𝑘𝐷𝑀𝑖
√(𝑂𝐼𝐷𝑖 − 𝑘𝜎𝑖,𝐴𝑀)(𝑂𝐼𝐷𝑖 + 𝑘𝜎𝑖,𝐴𝑀). 

Therefore, the Operator-Inspector Difference of an item 𝑖 is NOT an outlier whenever the ratio 

between the uncertainty and the value of Declared Mass (represented by 𝜂𝑖) is above a value 

𝜂̂𝑖, given by: 

𝜂̂𝑖 =
1

𝑘𝐷𝑀𝑖
√(𝑂𝐼𝐷𝑖 − 𝑘𝜎𝑖,𝐴𝑀)(𝑂𝐼𝐷𝑖 + 𝑘𝜎𝑖,𝐴𝑀). 

The higher the value of 𝜂̂𝑖, the higher the probability that 𝑂𝐼𝐷𝑖 is an outlier. If the value under 

the squared root is negative, there is no statistical evidence to identify 𝑂𝐼𝐷𝑖 as an outlier, 

according to the chosen outlier definition strategy. Moreover, we can directly compare 𝜂̂𝑖 with 

the ITV cut-off 𝜂𝐼𝑇𝑉. This yields to more interpretable results, and simplifies the detection of 

suspiciously high values of 𝜂̂𝑖. In particular we can distinguish 3 cases: 

1. 𝜂̂𝑖 = 0 (because the value under the square root is smaller than 0): no statistical evidence 

of anomaly; 

2. 0 < 𝜂̂𝑖 ≤ 𝜂𝐼𝑇𝑉: in this case we need to identify which values of 𝜂̂𝑖 are suspiciously high. 

However, the assessment of the magnitude of 𝜂̂𝑖 should be easily defined, given its direct 

connection with 𝜂𝐼𝑇𝑉. 



3. 𝜂̂𝑖 > 𝜂𝐼𝑇𝑉: the Assayed and the Declared Mass are statistically different, we are in 

presence of an outlier. 

Finally, we started this section by assuming that in the analysis of step 3.2 no systematic bias 

was detected (i.e. 𝛽 = 0). If this is not the case, then we have that: 

𝐸(𝑂𝐼𝐷𝑖) = 𝐸(𝐷𝑀𝑖 − 𝐴𝑀𝑖) = 𝛽𝐷𝑀𝑖            𝑉𝑎𝑟(𝑂𝐼𝐷𝑖) = 𝑉𝑎𝑟(𝐷𝑀𝑖 − 𝐴𝑀𝑖) = 𝜎𝑖,𝐷𝑀
2 + 𝜎𝑖,𝐴𝑀

2 . 

Therefore the 𝑂𝐼𝐷 is NOT an outlier if: 

|𝑂𝐼𝐷𝑖 − 𝛽𝐷𝑀𝑖| ≤ 𝑘√𝜂𝑖
2𝐷𝑀𝑖

2 + 𝜎𝑖,𝐴𝑀
2  

that leads to the following expression for the threshold: 

𝜂̂𝑖 =
1

𝑘𝐷𝑀𝑖
√(𝑂𝐼𝐷𝑖 − 𝛽𝐷𝑀𝑖 − 𝑘𝜎𝑖,𝐴𝑀)(𝑂𝐼𝐷𝑖 − 𝛽𝐷𝑀𝑖 + 𝑘𝜎𝑖,𝐴𝑀). 

 
Figure 6. Outcome of the third step of the analysis on use case 2 (impure Pu items measured in 

attended mode). The y-axis represent the variable 𝜂̂𝑖, a new evaluation parameter based on the 

ratio between the uncertainty and the value of Declared Mass. The value 𝜂𝐼𝑇𝑉 define the 

threshold between suspiciously high values of 𝜂̂𝑖 and obvious outliers, whereas 𝜂𝑇 discriminates 

the “safe” values of 𝜂̂𝑖 from the ones that may raise an alarm. At the end of the analysis, the 

measurements identified as outliers are reported by their measurement ID number, allowing 

inspectors for a quick graphical overview of the anomalous measurements.  

Figure 6 presents an example from use case 2 (impure Pu items measured in attended mode) of 

the application of this new threshold. The values of 𝜂𝐼𝑇𝑉 and 𝜂𝑇, that divide the plot into three 

sub-regions, are purely descriptive, in order to demonstrate how the outcome of this approach 

may be interpreted. The former define the border between suspiciously high values of 𝜂̂𝑖 and 

obvious outliers, whereas the latter discriminates the “safe” values of 𝜂̂𝑖 from the ones that may 

raise an alarm. This particular case is an interesting example as the items were shipped between 

two facilities and measured at both the shipper and the receiver with different instruments. A 

cross check between the results at both ends led to a confirmation that measurements number 

41, 46, 33 and 36 were inconsistent with the declarations and that the corresponding OIDs were 

actually outliers.  

 



4. Conclusion and future work  

 
The paper presents a proposal for a statistical analysis aimed at identifying trends in historical 

NDA measurements data. The proposal was recently presented to Euratom Safeguards 

inspectors and NDA technicians receiving positive comments. Specifically, inspectors 

recognised that the statistical analysis would complement the evaluation of data by calculation 

of acceptance criteria based on historical results, while NDA technicians found it a useful tool 

for monitoring equipment performance over time, planning maintenance intervention 

accordingly and timely detecting equipment failures.   

However, further analysis is required with larger sets of representative inspection’s 

measurements to finalise the statistical approach. There is a variety of NDA systems deployed 

in field, each with its own specificities, some are even uniquely custom made for a single 

application, and the statistical analysis needs to be able at the same time to adapt to 

measurement specificities while applying a consistent approach throughout material balance 

areas, installations and even throughout countries.  

In order to accomplish this task to the best possible extent, the practical implementation of the 

tool foresees to couple the statistical analysis with additional validation criteria based on a set 

of parameters defined a-priori that take into account the very detailed feature of each NDA 

instrumentation. This would add another layer of confidence in instrument performance that 

would timely alert the inspectors in their evaluation of the verification measurement. Moreover, 

the validation criteria would prevent the loading of erroneous results in the statistical analysis 

(for example, results containing clerical errors in the definition of the measurement parameters, 

some of which are easily overlooked during intense inspection activities). This, coupled with 

the application of a robust statistical method described earlier, is a further assurance that the 

evaluation criteria derived by the approach proposed will likely not be affected by anomalous 

observation.  
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