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ABSTRACT 

Nuclear safeguards experts use advanced statistical algorithms to calculate verification sampling plans. Sampling 

plans must meet or exceed safeguards performance targets with minimal use of safeguards resources. For example, a 

plan will call for a certain number of resource-sparing non-destructive assay (NDA) verifications and high-precision 

destructive analysis (DA) samples in order to achieve an overall detection probability with minimal “cost” of 

inspection time, shipping fees, laboratory burden, facility disruption, etc. 

In recent years, experts in safeguards statistical and probabilistic methodologies have proposed algorithmic advances 

to further improve sampling plans’ efficiency while improving field usability, adapting to revised safeguards 

objectives, and maintaining a high level of effectiveness. These algorithms are implemented in the SAMPLAN software 

toolkit. Today, SAMPLAN is notable for both its current capabilities and its development strategy: evolutionary 

prototyping is used to rapidly refine algorithms, user interfaces, test cases, etc., which can then be implemented in 

production software for long-term use. This paper documents the prototyping strategy and SAMPLAN’s resulting 

capabilities. 

Keywords: IAEA; safeguards; diversion detection; detection probability; methods development 

1 INTRODUCTION 

The “timely detection of diversion of significant quantities of nuclear material … and deterrence 

of such diversion by the risk of early detection” is a key safeguards objective for the International 

Atomic Energy Agency (IAEA) [1]. In practice the IAEA meets this objective through nuclear 

material accountancy, backed by inspections to verify the accountancy declarations’ accuracy. 

Since it is impossible to verify every declared item with perfect sensitivity, the inspections achieve 

this safeguards objective—deterring diversion by creating a risk of early detection—using random 

sampling. Drawing robust safeguards conclusions from random samples requires bespoke 

statistical algorithms. 

For example, bespoke algorithms are used to evaluate the detection probability (DP) or conversely 

to plan sample sizes sufficient to achieve a specified DP. The most commonly used sample size 

calculation (SSC) algorithm is an approximation introduced in an era in which “not all the 

inspectors had ready access to a [personal computer] on all occasions” [2]. Although “the quality 

of the approximate algorithm was found to be very good” [ibid.], new approaches have been 

developed to improve upon this SSC algorithm and its implementation. The resulting SSC process 

is more flexible and precise and therefore yields plans that are equally effective but more resource-

efficient. The updated SSC algorithms, software prototype, and process are discussed in the 

SAMPLAN CAPABILITIES section below. 



Besides what these capabilities are, readers may also take interest in how these capabilities were 

developed from whiteboard sketches to field-ready prototypes. The SAMPLAN prototyping 

framework was carefully selected to overcome the challenges one observes in projects integrating 

new technology into existing safeguards systems. These challenges and the SAMPLAN prototyping 

framework are discussed next. 

2 REFINING STATISTICAL ALGORITHMS FOR SAFEGUARDS 

For safeguards algorithms and software, one is confronted by technology integration challenges as 

early as the requirements gathering phase. The new technology is required in some ways to 

maintain continuity with the replaced technology while in other ways improving upon it. For 

example, facility approaches may specify total sample sizes but leave flexibility in the verification 

methods applied to each sample. It is often difficult to assess a priori which aspects can be 

improved and which must be maintained; the assessment usually depends on interdependent 

processes, which have evolved over decades and may vary by facility type and scale and by 

safeguards agreement. In such projects, even carefully elicited requirements may be incomplete or 

misadjusted. 

SAMPLAN is one such project with limited a priori knowledge of requirements. The predecessor 

software and processes for the typical SSC problem are frequently used, and training on these 

processes is well established. However, the software and algorithms have not been updated since 

at least 2001 [2], and many improvements have been proposed. Given the complexity of IAEA 

safeguards, experts have limited ability to foresee side-effects of updated SSC algorithms, 

e.g. sample sizes exceeding facility-specific targets or insufficient data to effectively assess 

declaration-measurement quality. SSC calculations are also typically performed in the field under 

time pressure, so the system must minimize computation time and user interface complexity. 

Distilling these considerations into precise requirements is not possible without field testing. 

To field test new SSC algorithms and methods, SAMPLAN was created as an evolutionary 

prototype—flexible enough for rapid improvement but reliable enough for frequent use. 

Algorithms and procedures are proposed by methodological experts, then refined in a design–

build–test–review feedback loop. Experience from the refining process is captured into 

requirements, test cases, and documentation. Success of the prototyping exercise depends on how 

well this experience is captured, how much the prototype improves in each iteration, and how 

rapidly iteration can occur. 

To strike the optimal balance between flexibility and reliability, the evolutionary prototype spans 

the gap between research artifacts (demonstration scripts, white papers, spreadsheets) and 

enterprise software. See comparison in Table I. 

The evolutionary prototype currently supports both routine evaluations and advanced use cases. 

Refer to the system dependency diagram in Fig. 1. Users (safeguards inspectors and some 

evaluators) are assumed to not have scripting experience, so routine evaluations are supported by 

a graphical user interface (GUI). The interface is implemented using a R Shiny library [3]. Shiny 

usually creates web applications, but has been adapted here to self-update and launch on the user’s 

personal computer. Screenshots from the GUI are included in later sections. 
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Figure 1. A conceptual diagram depicting how evaluations are supported by high-level 

libraries, which in turn are supported by low-level libraries. Relational databases are 

not used in SAMPLAN at this time. 

TABLE I. Comparison between research artifacts, evolutionary prototypes, and 

enterprise software. 

 
Research 

Artifacts 
Evolutionary Prototype Enterprise Software 

Code quality 

Often messy; 

evolves as 

features are 

needed 

Code begins messy, 

stabilizes, then cleaned 
Clean 

Testing & Data 

QC 

Limited, as 

needed 

Testbed to identify key 

QC and tests 

Comprehensive 

coverage 

Documentation 
Limited, as 

needed 

Detailed documentation 

added to cover process 

and algorithms 

Comprehensive 

coverage 

Version control 

& peer review 

Limited, as 

needed 

Increasingly formal as 

field testing expands 
Formal 

Framework 

Researcher choice 

(Excel, VBA, 

Python, SAS, 

Matlab, R, …) 

Scripting language 

module with extension to 

compiled languages, 

SQL, GUI as needed 

Enterprise standards 

(e.g. formal C#, .net, 

SQL Server projects) 

Maintenance 

Life 

Temporary proof 

of concept 

Dozens of iterations 

(until requirements 

stabilize) 

Stable long-term use 

 



In addition to the GUI, evaluators can address advanced use cases using R, e.g. scripts, R 

Markdown files, and the command line. The scripting interface is particularly powerful for 

repeated function calls (as one often needs in sensitivity studies and algorithm testing). The 

language R is primarily supported (to facilitate collaboration with statistical experts), but 

evaluators have also demonstrated Python use via rpy2 [4]. 

Both the GUI and the scripts are built on the algorithms implemented in the SAMPLAN  R library. 

The library is deployed via an internally hosted package repository. SAMPLAN prototypers can 

easily implement, locally test, and deploy small improvements in under an hour. 

As functionality in the SAMPLAN R library matures, some portions are rewritten in C++. C++ is 

more difficult to write and maintain than R, but vastly outperforms R for operations that cannot be 

vectorized. Therefore not all functionality is planned to be migrated to C++; good candidates for 

the C++ library are functions that are computationally intensive, difficult to vectorize within R, 

and feature-stable. 

When features are migrated to C++, the analogous R implementation is usually maintained as well. 

The C++ implementation is preferred for routine use; the redundant R implementation facilitates 

expert review and can be rapidly adapted for further research. The two implementations are kept 

in sync using test cases, and maintenance effort is minimal for stable functionality. 

One notes that pairing R with C++—or more broadly, pairing a flexible scripting language with 

an optimized compiled language—is a design pattern common across disciplines. For example, 

engineering modeling/simulation codes use Python to drive compiled C++ and Fortran modules 

[5], often with script access to the Python library [6][7]. Similarly, many statistics and machine 

learning toolkits are developed as Python or R wrappers for C++ libraries [8][9][10][11][12]. To 

support projects like these, various toolkits have emerged to facilitate C++ interoperability with 

Python [13][14][15] and R [16][17]. SAMPLAN is hardly the first project to use this design pattern, 

and it is able to leverage a large collection of open-source tools to streamline prototype 

development. 

Alongside the SAMPLAN C++ library, a relational database could be used to stabilize and scale 

certain operations. A lightweight internal database instance would be useful to prototype the 

database schema needed for an enterprise implementation. Alternatively, the R code could run 

read-only queries on externally maintained databases to collect parameters for SAMPLAN 

calculations (as is done in other evolutionary prototypes maintained by the authors). Neither 

database approach has been necessary for SAMPLAN prototyping yet. However, the SAMPLAN R 

library uses database-like table structures to facilitate later conversion to a formal database. 

As Table I suggests, SAMPLAN is now maturing even as new methods are added. Test- and 

documentation-coverage are rapidly rising, and the version control system was recently upgraded 

from automated snapshots to a git [18] repository. Functionality is migrated to (or removed from) 

the GUI and C++ library in response to user feedback. 

Through testing on dozens of real-world use cases, powerful new safeguards capabilities have been 

created. 



3 SAMPLAN CAPABILITIES 

SAMPLAN functions like a typical desktop application: The user can launch the GUI with a click; 

updates are automatically installed (if the package repository can be reached); inputs can be saved 

and loaded; integrated demonstration files can be loaded to review training cases. 

Within this framework, DP and SSC modules applicable to various safeguards use cases can be 

implemented. Three modules are currently implemented: 

• an overhaul of the Basic SSC, also known as the Nested Sampling Plan, used for most 

safeguards sample size calculations; 

• the new Multi-Stratum DP algorithm [19], to evaluate DP for diversion scenarios spanning 

multiple strata, implemented in support of the State-Level Approach Improvement Project 

(SLAIP) [20]; and 

• the new TRIPS algorithm [21], to plan and evaluate randomly scheduled inspections, also 

implemented in support of the SLAIP. 

An additional two modules are planned: 

• an update of the Two-Stage SSC, for verification methods that randomly select a number 

of items, then randomly select a number of sub-items from each selected item and 

• an update of the Follow-up SSC, to determine verification actions in the event that a 

defective item is identified. 

The predecessor software implemented these capabilities as separate applications, but their 

integration in SAMPLAN allows the modules to leverage capabilities from one another. For 

example, the Multi-Stratum DP module now uses the strata and settings specified in the Basic SSC 

module. This means that the advanced features of the Basic SSC module (described below) 

automatically flow into multi-stratum calculations. 

Of the three currently implemented modules, only the Basic SSC has not been described in earlier 

publications, so its significantly expanded capabilities are discussed in depth here. 

3.1    “Basic” SSC Capabilities in SAMPLAN  

The Basic SSC is most commonly used for safeguards. It models a scenario in which up to three 

methods of varying precision are used to verify a stratum of multiple similar objects; refer to Refs. 

[19] for further details. The GUI for this SSC is shown in Fig. 2. 

On the Input panel, users enter information about the stratum being verified. Refer to the list of 

fields in Table II. These fields are analogous to fields in the predecessor SSC software, and 

SAMPLAN can import predecessor files. However, the SAMPLAN fields have been adapted to avoid 

manual calculations. For example, inspectors currently must calculate beta by looking up the 

verification level (usually RH, RM, or RL), interpreting it as a probability (0.9, 0.5, or 0.2), then 

subtracting from one (0.1, 0.5, or 0.8). SAMPLAN simply requires the verification level. The 

SAMPLAN fields and the predecessor equivalent are compared in Table II. Crucially, SAMPLAN 

minimizes the manual calculations necessary during time-sensitive inspections. 

 

 



 

Figure 2. An overview of the SAMPLAN Basic SSC GUI. For the Enriched 30B cylinders stratum, the Input, Results, and 

Declaration Summary panels are shown. The Plot panel is collapsed here but will be shown in a later figure. Image has been 

edited to remove confidentiality warnings and reduce whitespace. 



In addition to these predecessor-like input fields, new fields have been added. For example, the 

new “Balanced” algorithm can use non-Gaussian measurement error models, e.g. a step function 

of the number of defects. Most users do not need to use these advanced options; they can simply 

leave the advanced options box unchecked and use widely applicable defaults. 

From these inputs, SAMPLAN calculates sample sizes for each instrument. SAMPLAN offers multiple 

sampling plans because there is no single “best” plan. Any plan that achieves the required DP is 

considered valid, and the inspector’s preference among these depends on various operational 

TABLE II. A comparison of Basic SSC inputs (SAMPLAN vs predecessor). 

SAMPLAN 

Field 
Description Predecessor Equivalent 

RSDs 

Relative Standard Deviation: Estimated 

uncertainty of each verification 

instrument. RSD is expressed as a decimal 

(not percent) in keeping with safeguards 

conventions. 

Same as SAMPLAN, but labeled 

delta. 

Verification 

Level 

Detection Probability required by the 

state-level approach, usually Random 

High (90%), Random Medium (50%), and 

Random Low (20%). Arbitrary 

percentages can be entered for other cases. 

Inspector must calculate beta: 

one minus the verification level 

(e.g. 0.1, 0.5, or 0.8). 

Material 

Type 

One of LEU, HEU, Pu, etc, which defines 

the Significant Quantity (SQ) amount and 

measurand (U mass, 235U mass, Pu mass, 

etc). Arbitrary amounts can be entered for 

unforeseen cases. 

Inspector must enter the 

divertor’s goal corresponding to 

1 SQ: 75 (kg 235U) for low-

enriched uranium, 20000 (kg U) 

for depleted uranium, etc. 

Declared as 

Whether the material is declared as 

inventory, outbound shipments, or 

inbound receipts. 

Inspector must select Und for 

receipts and Ovr for inventory 

and shipments. 

Total Mass 

The total mass of the specified isotope can 

usually be copied from the Itemized 

Inventory Listing. 

Inspector must calculate and 

enter the mass per item. 

Number of 

items 

The number of declared items in the 

stratum. 

Same as SAMPLAN, but labeled 

N. 

Unverified 

mass 

The mass in the stratum that is 

inaccessible for verification. Per 

safeguards procedure [23], the user sums 

all unverifiable mass with the same 

Material Type. QC ensures that unverified 

mass is consistent across strata. 

No equivalent field; the inspector 

must manually total the 

unverifiable material across 

strata and subtract it from the 

“goal” (see above). 

 



considerations. Therefore the inspector may choose to use the plan calculated by the “legacy” 

algorithm (which replicates the predecessor software), one of multiple new constrained 

optimization algorithms (to be described in upcoming publications), or even enter a custom plan. 

Entering a custom plan allows the user to check its effectiveness in terms of DP, which is important 

for planning around instrument failures and for post-inspection DP evaluation. This DP-

calculation capability was not possible with the predecessor inspector software; a separate DP 

application was used by evaluators. 

High-priority notes and warnings are listed below the sampling plan, and additional diagnostics 

are available at the right edge of the GUI. The Declaration Summary echoes input information 

about the number of items, SQ definition, etc., which helps the user confirm that the inputs were 

correctly figured and entered. 

Below the Declaration Summary, the DP is plotted across a spectrum of diversion scenarios. See 

Fig. 3. This plot is very important because it shows whether the selected plan is effective. (The 

 

Figure 3. A detail of the Plot portion of the SAMPLAN Basic SSC GUI. The black 

markers plot the achieved DP (vertical axis, transformed so 𝑙𝑜𝑔(1 − 𝐷𝑃) is linear) for 

each considered diversion scenario. The diversion scenario is characterized by the 

number of defective items from which material is diverted (horizontal axis, logarithmic 

scale). A red X indicates that the achieved DP is less than the required verification 

level (green line), and therefore the plotted sampling plan is not effective. The shaded 

contours estimate the DP if each H (green), F (blue), and DA (red) sample were 

sequentially removed. In this example, the contours indicate that all three methods are 

equally effective for gross defects (left edge), but methods H and eventually F lose 

effectiveness as the number of defects increases. Image has been edited to remove 

confidentiality warnings. 



plan is valid if the red/black DP points are all above the green VL line.) Similar plots are used in 

the predecessor software and SSC training, but in SAMPLAN the plot is interactive and exportable. 

Importantly, the SAMPLAN DP plot introduces a new “nonlinear y-axis” transformation that makes 

the DP appear to “stack up” as samples are added. The thickness of each sample indicates its 

effectiveness for that diversion scenario. With this visual guide, the user can rapidly find a 

custom plan that is both effective, efficient and, practical. 

In addition to these improvements, various experimental features have been demonstrated in the 

SAMPLAN Basic SSC for research purposes. For example, a correction has been proposed to deduct 

the false-alarm rate from the DP, and a stochastic DP calculation has been demonstrated to account 

for covariance effects. These capabilities are not intended for safeguards use (yet), but their 

implementation in SAMPLAN will enable testing on real use cases. 

4 CONCLUSIONS 

SAMPLAN is an evolutionary prototype for DP and SSC calculations, spanning the gap between 

early plans and enterprise software development. The algorithms are implemented in R and C++ 

but can be used via a GUI or scripting interface. The prototype uses off-the-shelf open-source 

frameworks and well-established design patterns. This allows revisions to be implemented and 

fielded within hours, not days, so the new methods can rapidly mature. 

To date, three modules have been prototyped in SAMPLAN: a new multi-stratum DP algorithm, 

planning/evaluation algorithms for randomly scheduled inspections, and improvements of the 

routinely used SSC. This paper focuses on the latter, and highlights three improvements. First, 

inputs have been reformulated to minimize the need for manual calculations in the field. Second, 

inspectors can now assess alternative sampling plans in the field. These alternative sampling plans 

can be calculated with advanced settings, including non-Gaussian error models. Third, improved 

DP visualization enables inspectors to rapidly improve alternative plans. These improvements will 

enable inspectors to use safeguards resources as efficiently as possible while continuing to conduct 

effective verification activities. 
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