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Abstract 

Nuclear fuel cycle facility declarations on nuclear material inventories and transfers are independently 

verified by the IAEA. These verification activities usually rely on a sampling plan that is designed to 

achieve a specified probability to detect falsification of operator reports. Currently, the IAEA’s 

sampling plans assume item-by-item tests in which the difference between the reported and the measured 
value of each item selected for verification is compared to a threshold. If a difference exceeds this 

threshold, then an “alarm” occurs, and the cause for the difference is further investigated. 

In the present paper we analyse sampling plans in which in addition to the usual item-by-item tests, a 
stratum difference statistic of the verified items is applied as a test statistic. The reason for considering 

the stratum difference statistic in addition to the item-by-item tests is that it is “better” at detecting bias 

defect falsifications than the item-by-item tests. Therefore, we investigate the effectiveness in terms of 

the achieved detection probability of sampling plans in which both tests are applied and analyse whether 

sample sizes could be reduced while still achieving the required detection probability. 

 

Keywords: IAEA; Verification sampling plans; item-by-item tests; difference statistic 

 

1 Introduction and Motivation 

Nuclear fuel cycle facility declarations on nuclear material inventories and transfers are independently 

verified by the IAEA. These verification activities usually rely on a sampling plan that is designed to 

achieve a specified probability to detect falsification of operator reports by a specified total amount of 

material. Currently, the IAEA’s sampling plans assume item-by-item tests (shortly 𝑆𝑃𝑖𝑡𝑒𝑚) that are 

based on item-by-item tests in which the relative difference between the reported and the measured value 

of each item selected for verification is compared to a threshold. If a relative difference exceeds this 
threshold, then an “alarm” occurs, and the cause for the difference is further investigated. This 

clarification is incorporated into the probabilistic model underlying 𝑆𝑃𝑖𝑡𝑒𝑚. Under further assumptions 

(see [1] and section 2), the detection probability (DP) can be derived, and a sampling plan can be 

determined that achieves a required DP. This approach is summarized in section 2. 

Instead of or in addition to the item-by-item tests, the overall (over all observed relative differences) 

relative difference statistic (𝐷-statistic) of the verified items could be applied as test statistic. These 

sampling plans are abbreviated by 𝑆𝑃𝐷 and 𝑆𝑃𝑖𝑡𝑒𝑚,𝐷, and they are investigated in sections 3 and 4. It 

will turn out that if the current IAEA detection event of “observing at least one significant (item-by-

item) difference for a falsified item” is generalized to the combined event of “observing at least one 
significant (item-by-item) difference for a falsified item” or “observing a significant relative stratum D-
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statistic when there is at least one falsified item among the sampled items”, then 𝑆𝑃𝑖𝑡𝑒𝑚,𝐷 leads – at least 

for the numerical examples considered so far – to a remarkable reduction of the sample size while still 

achieving the required detection probability. 

Section 5 concludes the paper with a summary and future research activities. 

2 Sampling plans based on item-by-item tests (𝑺𝑷𝒊𝒕𝒆𝒎) 

Let 

• 𝑁 be the number of items in the stratum for which the operator has declared a mass; 

• 𝑥̅ be the average amount of declared nuclear material in an item as estimated from the operator’s 

declaration; 

• 𝑀 be the diverter’s goal quantity (usually, one significant quantity); 

• 𝛿 be the combined relative standard deviation (RSD) of the operator’s and inspector’s 

verification measurement methods; 

• 𝑛 be the sample size, i.e., the number of items to be verified by the inspector; 

• 𝑟 be the number of falsified items in the stratum. 

Current IAEA sampling plans are based on several assumptions, which are described in detail in [1]. To 

name just a few of these assumptions: Purely random multiplicative measurement model, diversion into 

the relative difference statistic (see below), item-by-item testing, the goal quantity 𝑀 is diverted from 

the stratum, and equal diversion hypothesis, i.e., if 𝑟 items are falsified, then the amount 𝑀 𝑟⁄  is or will 

be removed from each of these items. 

Because it is assumed that all falsified items are falsified by the same amounts (see the equal diversion 

hypothesis above), the set of diversion strategies is given by {⌈𝑀 𝑥̅⁄ ⌉, … ,𝑁}, where the ceiling operator 
⌈𝑎⌉ of a real number 𝑎 is the smallest integer not less than 𝑎. 

In the accounting records, the operator declares the nuclear material masses 𝑥1, … , 𝑥𝑁, where 𝑥𝑖 is the 

mass of the 𝑖-th item, and 𝑥̅ the average item mass, i.e., the population is assumed to be sufficiently 

homogeneous; see [2]. 

Because a purely random multiplicative measurement model is assumed, these masses are modelled as 

realizations of a random variables 𝑋𝑖 = 𝑡𝑂𝑝,𝑖(1 + 𝑅𝑂𝑝,𝑖), where 𝑡𝑂𝑝,𝑖 is the true, but unknown, amount 

of nuclear material of item 𝑖 and 𝑅𝑂𝑝,𝑖 is the normally distributed random error with expectation zero 

and variance 𝛿𝑂𝑝
2 , i.e., 𝑅𝑂𝑝,𝑖~𝒩(0, 𝛿𝑂𝑝

2 ) for 𝑖 = 1,… ,𝑁. 

The inspector verifies 𝑛 out of the 𝑁 items by performing independent measurements. Without loss of 

generality (see [3] or [4]) it can be assumed that the first 𝑛 items are verified, i.e., the inspector measures 

𝑌𝑖 = 𝑡𝐼𝑛𝑠𝑝,𝑖(1 + 𝑅𝐼𝑛,𝑖), where 𝑡𝐼𝑛𝑠𝑝,𝑖 is the true, but unknown, amount of nuclear material present in 

item 𝑖 and 𝑅𝐼𝑛,𝑖~𝒩(0, 𝛿𝐼𝑛
2 ) for 𝑖 = 1,… , 𝑛. Let 𝛿2 ≔ 𝛿𝑂𝑝

2 + 𝛿𝐼𝑛
2 . 

Using the individual relative differences 𝐷𝑖 ≔ (𝑋𝑖 − 𝑌𝑖) 𝑋𝑖⁄  for 𝑖 = 1,… , 𝑛, the inspector performs a 

statistical test on the item-by-item basis to test the hypothesis 

𝐻0: no diversion versus 𝐻1: diversion of the goal quantity (𝑀) from the stratum ,  

i.e., he compares the individual 𝐷𝑖 to a threshold. If under 𝐻1 𝑖 falsified items are in the sample of size 

𝑛, then it can also be assumed without loss of generality (see [3] or [4]) that the first 𝑖 items are the 

falsified ones, because the equal diversion hypothesis implies that the DP depends on the number of 

falsified items in the sample, and not exactly which ones are falsified.  

Thus, we have for the overstatement case (i.e., less material is present than is declared, see [1]) and 

under some suitable assumptions (see [1]) 
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𝐷𝑗 ∼ 𝒩(0, 𝛿
2) for 𝑗 = 1,… , 𝑛 under 𝐻0

𝐷𝑗 ∼ { 
𝒩 (

𝑀

𝑥̅𝑟
, (1 −

𝑀

𝑥̅𝑟
)
2

𝛿2) for 𝑗 = 1,… , 𝑖

𝒩(0, 𝛿2) for 𝑗 = 𝑖 + 1,… , 𝑛

under 𝐻1
 . (1) 

Eq. (1) indicates, that even under 𝐻1 some of the items (namely 𝐷𝑖+1, … , 𝐷𝑛) are distributed as if 𝐻0 

were true. 

Considering the threshold 3𝛿, a false alarm (FA) is raised if 𝐷𝑗 > 3𝛿 for at least one 𝑗 = 1,… , 𝑛. This 

decision rule leads to a single FAP of approximately . 0013 because (assume one-sided testing) 

ℙ𝐻0(𝐷𝑗 > 3𝛿) = 1 − ℙ𝐻0 (
𝐷𝑗

𝛿
≤ 3) = 1 − Φ(3) ≈ .0013 ,  

where Φ(∙) is the distribution function of the standard normally distributed random variable. Because a 

purely random multiplicative measurement model is assumed, the false alarm probability FAP 𝛼1(𝑛) is 

𝛼1(𝑛) ≔ ℙ𝐻0(at least one false alarm) = 1 − ℙ𝐻0(no false alarms)

 = 1 − ℙ𝐻0(𝐷1 ≤ 3𝛿,… , 𝐷𝑛 ≤ 3𝛿) = 1 − (Φ(3))
𝑛
 .

 (2) 

Under 𝐻1 (diversion of the goal quantity 𝑀 from the stratum), we have 𝑖 falsified and 𝑛 − 𝑖 non-falsified 

items in the sample (1 ≤ 𝑖 ≤ 𝑀𝑖𝑛(𝑟, 𝑛)), i.e., by Eq. (1): 𝐷1, … , 𝐷𝑖 ∼ 𝒩(𝑀 (𝑥̅𝑟)⁄ , (1 −𝑀 (𝑥̅𝑟)⁄ )2𝛿2) 
and 𝐷𝑖+1, … , 𝐷𝑛 ∼ 𝒩(0, 𝛿

2). In [1] it is discussed in detail that any alarm, i.e., any significant individual 
relative difference, is clarified as to whether it is due to a false alarm or due to a diversion. Thus, only 

the differences 𝐷1 , … , 𝐷𝑖 of the falsified items are considered, while the differences 𝐷𝑖+1, … , 𝐷𝑛 of the 

non-falsified items – which may only lead to a false alarm – are excluded. 

Therefore, the non-identification probability, i.e., the probability of not identifying/classifying any 

falsified item as falsified, is given by 

ℙ𝐻1(𝐷1 ≤ 3𝛿,… , 𝐷𝑖 ≤ 3𝛿) = ∏ℙ𝐻1 (
𝐷𝑗 −𝑀 (𝑥̅𝑟)⁄

(1 − 𝑀 (𝑥̅𝑟)⁄ )𝛿
≤

3𝛿 −𝑀 (𝑥̅𝑟)⁄

(1 −𝑀 (𝑥̅𝑟)⁄ )𝛿
)

𝑖

𝑗=1

 = (Φ(
3𝛿 − 𝑀 (𝑥̅𝑟)⁄

(1 −𝑀 (𝑥̅𝑟)⁄ )𝛿
 ))

𝑖

 .

 (3) 

Because the IAEA verification sampling plans are based on item-by-item tests, the detection event is 

defined by 

detection event ≔ {observing at least one significant item − by − item          

    relative difference for a falsified item}
 . (4) 

Without going into the details (see [1]), using the hypergeometric distribution, Eqs. (3) and (4) and the 

law of total probability (see [5] or [6]) yield for the detection probability 𝐷𝑃(𝑛, 𝑟) 

𝐷𝑃(𝑛, 𝑟) ≔ ℙ𝐻1(detection event)

 = 1 − ∑
(
𝑟
𝑖
) (
𝑁 − 𝑟
𝑛 − 𝑖

)

(
𝑁
𝑛
)

 (Φ(
3𝛿 −𝑀 (𝑥̅𝑟)⁄

(1 − 𝑀 (𝑥̅𝑟)⁄ )𝛿
 ))

𝑖

.

𝑀𝑖𝑛(𝑟,𝑛)

𝑖=𝑀𝑎𝑥(0,𝑟−(𝑁−𝑛))

 (5) 

For example, let 

𝑁 = 250, 𝑥̅ = 5, 𝛿 = 1%, 𝑀 = 75 [kg] . (6) 

The DP curve is depicted in Figure 1 for the sample size 𝑛 = 27, that is the smallest sample size such 

that 𝐷𝑃(𝑛, 𝑟) ≥ 0.2 for all 𝑟 from the set {⌈𝑀 𝑥̅⁄ ⌉, … ,𝑁} of diversion strategies. 
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Figure 1: 𝐷𝑃(27, 𝑟) as a function of the number 𝑟 of falsified items. 

 

The left-hand vertical line in Figure 1 refers to gross defect falsification in which ⌈𝑀 𝑥̅⁄ ⌉ = 15 items are 

assumed to be completely emptied. 

3 Sampling plans based on the relative stratum difference 𝑫-statistic (𝑺𝑷𝑫) 

The sampling plans considered in this section are based on the relative stratum difference statistic 

defined by 

𝐷 ≔
𝑁

𝑛
 ∑𝐷𝑗

𝑛

𝑗=1

 , (7) 

i.e., instead of comparing the 𝑛 differences 𝐷𝑗  individually as in section 2, they are summed up and 

propagated to the whole stratum. Therefore, the inspector’s decision is based on aggregated information. 

If 𝐻0 (no diversion) is true, then (recall: purely random multiplicative measurement model) Eq. (7) 

yields, using Eq. (1), 

𝐷 ∼ 𝒩(0,
𝑁2

𝑛
𝛿2) . (8) 

Let 𝑈(∙) denotes the inverse function of Φ(∙). The threshold 𝑘𝐷 with which the value of the 𝐷-statistic 

is compared is given by 

𝑘𝐷 =
𝑁

√𝑛
 𝛿 𝑈((Φ(3))

𝑛
) , (9) 

because then 𝑆𝑃𝑖𝑡𝑒𝑚 and 𝑆𝑃𝐷 have the same FAP: By Eqs. (2) and Eq. (8) we have 

𝛼2(𝑛) ≔ ℙ𝐻0 (𝐷 >
𝑁

√𝑛
 𝛿 𝑈((Φ(3))

𝑛
)) = 1 − ℙ𝐻0 (

√𝑛 𝐷

𝑁 𝛿
≤ 𝑈((Φ(3))

𝑛
))

 = 1 − (Φ(3))
𝑛
= 𝛼1(𝑛) .

 (10) 

Suppose 𝐻1 is true (diversion of the goal quantity 𝑀 from the stratum). If there are 1 ≤ 𝑖 ≤ 𝑀𝑖𝑛(𝑟, 𝑛) 
falsified items in the sample, then the expectation and variance of the relative stratum 𝐷-statistic are by 

Eq. (1) 
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𝔼𝐻1(𝐷) = 𝔼𝐻1 (
𝑁

𝑛
∑𝐷𝑗

𝑛

𝑗=1

) =
𝑁

𝑛
 𝑖 
𝑀

𝑥̅𝑟
and

𝕍𝐻1(𝐷) =
𝑁2

𝑛2
∑𝕍𝐻1(𝐷𝑗)

𝑛

𝑗=1

=
𝑁2

𝑛2
(𝑖 (1 −

𝑀

𝑥̅𝑟
)
2

𝛿2 + (𝑛 − 𝑖) 𝛿2) ,  

  

therefore, the probability of observing a non-significant relative stratum 𝐷-statistic is 

 ℙ𝐻1(𝐷 ≤ 𝑘𝐷)

= ℙ𝐻1

(

 
𝐷 −

𝑁
𝑛
 𝑖 
𝑀
𝑥̅𝑟

𝑁
𝑛
 √𝑖 (1 −

𝑀
𝑥̅𝑟
)
2

𝛿2 + (𝑛 − 𝑖) 𝛿2 

≤
𝑘𝐷 −

𝑁
𝑛
 𝑖 
𝑀
𝑥̅𝑟

𝑁
𝑛
 √𝑖 (1 −

𝑀
𝑥̅𝑟
)
2

𝛿2 + (𝑛 − 𝑖) 𝛿2 )

 

= Φ

(

 
√𝑛 𝑈((Φ(3))

𝑛
) − 𝑖 

𝑀
𝑥̅𝑟𝛿

√𝑖 (1 −
𝑀
𝑥̅𝑟
)
2

+ 𝑛 − 𝑖 )

  .

 (11) 

In contrast to Eq. (3), Eq. (11) is not just based on the differences 𝐷1 , … , 𝐷𝑖 of the falsified item but also 

on the differences 𝐷𝑖+1, … , 𝐷𝑛  of the non-falsified items. 

Because sampling plans based on the relative stratum 𝐷-statistic are not (yet) applied by the IAEA, there 

exist no agreed rules for clarifying an alarm raised by applying the relative stratum 𝐷-statistic, and we 

assume (as for the item-by-item tests in section 2) in the following that any significant value of the 

relative stratum 𝐷-statistic is clarified as to whether it is due to a false alarm or due to a diversion: In 

case of 𝑑 ≤ 𝑘𝐷 (non-significant value of the relative stratum 𝐷-statistic) no further action is needed, and 

in case of 𝑑 > 𝑘𝐷 the significant relative stratum 𝐷-statistic is attributed to a diversion. We also assume 

that the detection event is redefined as follows: 

significant stratum 𝐷 − statistic ≔ {observing a significant value of the relative
                                                                       stratum 𝐷 − statistic when there is at least
                                                                          one falsified item among the sampled items}

 . (12) 

The probability of the event in Eq. (12) is, in analogy to Eq. (5) and by using Eq. (11), given by 

 𝑃𝐷(𝑛, 𝑟) = ℙ𝐻1(significant stratum 𝐷 − statistic)

≔

{
 
 
 
 
 

 
 
 
 
 
1 − ∑

(
𝑟
𝑖
) (
𝑁 − 𝑟
𝑛 − 𝑖

)

(
𝑁
𝑛
)

 Φ

(

 
√𝑛 𝑈((Φ(3))

𝑛
) − 𝑖 

𝑀
𝑥̅𝑟𝛿

√𝑖 (1 −
𝑀
𝑥̅𝑟
)
2

+ 𝑛 − 𝑖 )

  

𝑀𝑖𝑛(𝑟,𝑛)

𝑖=𝑟−(𝑁−𝑛)

                                                                                                                  for  𝑟 − (𝑁 − 𝑛) ≥ 1

1 −
(
𝑁 − 𝑟
𝑛

)

(𝑁
𝑛
)

− ∑
(
𝑟
𝑖
) (
𝑁 − 𝑟
𝑛 − 𝑖

)

(𝑁
𝑛
)

 Φ

(

 
√𝑛 𝑈((Φ(3))

𝑛
) − 𝑖 

𝑀
𝑥̅𝑟𝛿

√𝑖 (1 −
𝑀
𝑥̅𝑟
)
2

+ 𝑛 − 𝑖 )

  

𝑀𝑖𝑛(𝑟,𝑛)

𝑖=1

                                                                                                                  for  𝑟 − (𝑁 − 𝑛) ≤ 0  .

 (13) 

Note that 𝑃𝐷(𝑛, 𝑟) is not called detection probability, because the underlying event in Eq. (12) is 

different from that of Eq. (4). Also note that despite the fact that 𝑆𝑃𝑖𝑡𝑒𝑚 and 𝑆𝑃𝐷 are based on different 

“detection” events, they are compared in this paper; see also section 5. 

For the example in (6), Figure 2 plots 𝑃𝐷(𝑛, 𝑟) for 𝑛 = 27 (as for the sampling plan in Figure 1) and 

𝑛 = 6. 𝑛 = 6 is the smallest sample size such that 𝑃𝐷(𝑛, 𝑟) ≥ 0.2 for all 𝑟 from the set {⌈𝑀 𝑥̅⁄ ⌉, … ,𝑁} 
of diversion strategies. 
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Figure 2: 𝑃𝐷(27, 𝑟) as a function of the number 𝑟 of falsified items. 

Figure 3 plots 𝐷𝑃(𝑛, 𝑟) and 𝑃𝐷(𝑛, 𝑟) of 𝑆𝑃𝑖𝑡𝑒𝑚 and 𝑆𝑃𝐷 for 𝑛 = 27. 

 

Figure 3: 𝐷𝑃(27, 𝑟) and 𝑃𝐷(27, 𝑟) as a function of the number 𝑟 of falsified items. 

Figure 3 shows that the sampling plan based on item-by-item tests is better at detecting large 

falsifications (gross defect, small values of 𝑟), and the sampling plan based on the relative stratum 𝐷-

statistic is better at detecting small falsifications (bias defect, large values of 𝑟). The same is true if the 

sample size 𝑛 = 6 is considered; see Figure 4. 

4 Sampling plans based on the item-by-item tests and the relative stratum 

D-statistic (𝑺𝑷𝒊𝒕𝒆𝒎,𝑫) 

Now assume that the inspector performs during an inspection 

1. the item-by-item tests (with clarification of any alarm), and then 

2. – in case of not observing any significant item-by-item difference caused by a falsified item – in 

addition the 𝐷-statistic. 

Thus, the inspector has more information available, and one could expect according to the motto "the 

more information the better" that this should bring something in terms of a higher probability of 
observing at least one significant difference for a falsified item or observing a significant value of the 

𝐷- statistic. 
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Figure 4: 𝐷𝑃(6, 𝑟) and 𝑃𝐷(6, 𝑟) as a function of the number 𝑟 of falsified items. 

 

Using the threshold 3𝛿 for the item-by-item tests and the threshold in Eq. (9) for the relative stratum 

difference statistic, the FAP is, by Eq. (10), given by 

𝛼3(𝑛) := ℙ𝐻0(at least one false alarm)

 = 1 − ℙ𝐻0 (𝐷1 ≤ 3𝛿,… , 𝐷𝑛 ≤ 3𝛿,
𝑁

𝑛
∑𝐷𝑗

𝑛

𝑗=1

≤ 𝑘𝐷)

 ≥ 𝛼1(𝑛) = 𝛼2(𝑛)

  (14) 

because ℙ(𝐴 ∩ 𝐵) ≤ 𝑀𝑖𝑛(ℙ(𝐴), ℙ(𝐵)) for any two events 𝐴  and 𝐵. Thus, the sampling plan 𝑆𝑃𝑖𝑡𝑒𝑚,𝐷 

has a different baseline (with respect to the FAP) compared to 𝑆𝑃𝑖𝑡𝑒𝑚 and  𝑆𝑃𝐷. Thus, a comparison of 

all three sampling plans seems to be somewhat unreasonable at first sight; see Eq. (18) for a discussion. 

Combining the events from Eqs. (4) and (12) we consider in 𝑆𝑃𝑖𝑡𝑒𝑚,𝐷 the event 

Combined detection ≔ {𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑒𝑣𝑒𝑛𝑡}  ∪ {significant stratum 𝐷 − statistic} , (15) 

in words: observing at least one significant (item-by-item) difference for a falsified item or observing a 

significant value of the relative stratum 𝐷-statistic when there is at least one falsified item among the 

sampled items. 

The probability 𝑃𝑖𝑡𝑒𝑚,𝐷(𝑛, 𝑟) of the event in Eq. (15) is, in analogy to Eqs. (5) and (13), given by 

 𝑃𝑖𝑡𝑒𝑚,𝐷(𝑛, 𝑟) = ℙ𝐻1(Combined detection)

≔

{
 
 
 
 

 
 
 
 
1 − ∑

(
𝑟
𝑖
) (
𝑁 − 𝑟
𝑛 − 𝑖

)

(𝑁
𝑛
)

 ℙ𝐻1 (𝑀𝑎𝑥(𝐷1, … , 𝐷𝑖) ≤ 3𝛿,
𝑁

𝑛
∑𝐷𝑗

𝑛

𝑗=1

≤ 𝑘𝐷) 

𝑀𝑖𝑛(𝑟,𝑛)

𝑖=𝑟−(𝑁−𝑛)

                                                                                                                  for  𝑟 − (𝑁 − 𝑛) ≥ 1

1 −
(
𝑁 − 𝑟
𝑛

)

(𝑁
𝑛
)

− ∑
(
𝑟
𝑖
) (
𝑁 − 𝑟
𝑛 − 𝑖

)

(𝑁
𝑛
)

 ℙ𝐻1 (𝑀𝑎𝑥(𝐷1, … , 𝐷𝑖) ≤ 3𝛿,
𝑁

𝑛
∑𝐷𝑗

𝑛

𝑗=1

≤ 𝑘𝐷) 

𝑀𝑖𝑛(𝑟,𝑛)

𝑖=1

                                                                                                                  for  𝑟 − (𝑁 − 𝑛) ≤ 0  .

 (16) 

Again, we do not call 𝑃𝑖𝑡𝑒𝑚,𝐷(𝑛, 𝑟) detection probability, because 𝑃𝑖𝑡𝑒𝑚,𝐷(𝑛, 𝑟) is not based on the 

detection event in Eq. (15) while the current detection event is based on Eq. (4). 

Because ℙ(𝐴̅ ∩ 𝐵̅) ≤ 𝑀𝑖𝑛(ℙ(𝐴̅), ℙ(𝐵̅)) for any two events 𝐴  and 𝐵, the inequality 



Proceedings of the INMM & ESARDA Joint Annual Meeting, May 22-26, 2023 

8 

ℙ(𝐴 ∪ 𝐵) = 1 − ℙ(𝐴̅ ∩ 𝐵̅)

 ≥ 1 − 𝑀𝑖𝑛(ℙ(𝐴̅), ℙ(𝐵̅)) = 𝑀𝑎𝑥(1 − ℙ(𝐴̅), 1 − ℙ(𝐵̅))

 = 𝑀𝑎𝑥(ℙ(𝐴), ℙ(𝐵))

  

holds, that further yields 

𝑃𝑖𝑡𝑒𝑚,𝐷(𝑛, 𝑟) ≥ 𝑀𝑎𝑥(𝐷𝑃(𝑛, 𝑟), 𝑃𝐷(𝑛, 𝑟)) , (17) 

if 𝐴 is the detection event of Eq. (4) and event 𝐵 is the “significant stratum 𝐷−statistic”-event of Eq. 

(12). Thus, 𝑃𝑖𝑡𝑒𝑚,𝐷(𝑛, 𝑟) is always higher than the single probabilities 𝐷𝑃(𝑛, 𝑟) and 𝑃𝐷(𝑛, 𝑟). Therefore, 

the statement "the more information the better" from the beginning of section 4 is indeed true in this 

context. 

Performing 104 simulations to estimate the probability ℙ𝐻1(… ) in Eq. (16) leads for the example in (6) 

to the curves depicted in Figure 5. The time for producing the curves in Figure 5 is about 4 minutes and 

it is mainly due to the simulation of ℙ𝐻1(… ) for the computation of 𝑃𝑖𝑡𝑒𝑚,𝐷(6, 𝑟). 

 

Figure 5: 𝐷𝑃(6, 𝑟), 𝑃𝐷(6, 𝑟) and 𝑃𝑖𝑡𝑒𝑚,𝐷(6, 𝑟) as a function of the number 𝑟 of falsified items. 

Figure 5 illustrates inequality (17): The combined test achieves the required DP of 0.2. Coming back to 

the starting point: In the current approach using 𝑆𝑃𝑖𝑡𝑒𝑚, 𝑛 = 27 items need to be verified to achieve the 

required 0.2 DP for all 𝑟 from the set {⌈𝑀 𝑥̅⁄ ⌉, … ,𝑁} of diversion strategies; see Figure 1. If the combined 
test would be applied during inspections in the field, then the sample size could be reduced to (at least, 

see below) 𝑛 = 6. 

Practically, a conservative approach to find a smallest 𝑛 such that inequality (17) is fulfilled, is, to ensure 

that 𝑀𝑎𝑥(𝐷𝑃(𝑛, 𝑟), 𝑃𝐷(𝑛, 𝑟)) is at least the required DP for all 𝑟 ∈ {⌈𝑀 𝑥̅⁄ ⌉, … ,𝑁}. Note that this 𝑛 can 

be found without using 𝑃𝑖𝑡𝑒𝑚,𝐷(𝑛, 𝑟) that is based on time-consuming simulations. 

However, if one desperately wants to determine 𝑛 using Eq. (16) instead of inequality (17), then an even 

greater reduction of the sample size 𝑛 is possible: For the example in (6) the curves 𝐷𝑃(𝑛, 𝑟), 𝑃𝐷(𝑛, 𝑟) 
and 𝑃𝑖𝑡𝑒𝑚,𝐷(𝑛, 𝑟) are depicted for 𝑛 = 5 in Figure 6. While the combined test still achieves the required 

0.2 DP, the D-statistic does not: 𝑃𝐷(5,250) = 0.199. While 𝑛 = 5 is indeed a marginal difference to 

𝑛 = 6 and not worth the computational effort, other examples might result in more remarkable 

differences. 

In Eq. (14) it is shown that a comparison of 𝑆𝑃𝑖𝑡𝑒𝑚 and  𝑆𝑃𝐷 with 𝑆𝑃𝑖𝑡𝑒𝑚,𝐷 is a bit unwarranted because 

the FAP of the 𝑆𝑃𝑖𝑡𝑒𝑚,𝐷 given by 𝛼3(𝑛) ≥ 𝛼1(𝑛) = 𝛼2(𝑛) and so the tests performed have a different 

FAP. What is the FAP for the example in (6)? Eqs. (2) and (14) (with 105 simulations for estimating 

𝛼3(𝑛)) lead to 

𝛼1(27) = 𝛼2(27) = 0.0358 and 𝛼3(27) = 0.0678

𝛼1(6) = 𝛼2(6) = 0.0081 and 𝛼3(6) = 0.0152 .
 (18) 



Proceedings of the INMM & ESARDA Joint Annual Meeting, May 22-26, 2023 

9 

 

Figure 6: 𝐷𝑃(5, 𝑟), 𝑃𝐷(5, 𝑟) and 𝑃𝑖𝑡𝑒𝑚,𝐷(5, 𝑟) as a function of the number 𝑟 of falsified items. 

 

As expected, the FAPs are different 0.0358 < 0.0678 for 𝑛 = 27and 0.0081 < 0.0152 for 𝑛 = 6, but 

𝛼3(6) < 𝛼1(27) = 𝛼2(27). Thus, the fact that 𝛼3(𝑛) ≥ 𝛼1(𝑛) = 𝛼2(𝑛) for 𝑛 = 6 and 27 should not 

concern us too much, because the reduction of the sample size results in a smaller 𝛼3(𝑛) which is even 

smaller than the FAPs of 𝑆𝑃𝑖𝑡𝑒𝑚: 𝛼3(6) < 𝛼1(27) = 𝛼2(27).  

Because ℙ(𝐴 ∪ 𝐵) ≤ ℙ(𝐴) + ℙ(𝐵) for any two events 𝐴  and 𝐵, the FAP 𝛼3(𝑛) fulfils by Eq. (2) 

𝛼3(𝑛) = ℙ𝐻0(at least one false alarm) ≤ 2 𝛼1(𝑛) ,  

and thus, cannot be larger than 2 𝛼1(𝑛), i.e., 𝛼1(𝑛) ≤ 𝛼3(𝑛) ≤ 2 𝛼1(𝑛). 

The sample size 𝑛 = 27 used in Figure 1 is determined such that 𝐷𝑃(𝑛, 𝑟) ≥ 0.2 for all 𝑟 from the set 
{⌈𝑀 𝑥̅⁄ ⌉, … ,𝑁} of diversion strategies. Currently the sample size used in a stratum is determined by the 

IAEA formula given by 𝑛𝐼𝐴𝐸𝐴 = ⌈𝑁 (1 − 𝛽𝑟𝑒𝑞
1 ⌈𝑀 𝑥̅⁄ ⌉⁄

)⌉, where ⌈𝑎⌉, 𝑎 ∈ ℝ, is the smallest integer not less 

than 𝑎, and 𝛽𝑟𝑒𝑞 is the required non-detection probability. For the example in (6) and 𝛽𝑟𝑒𝑞 = 0.8, we 

get 𝑛𝐼𝐴𝐸𝐴 = 4. Because the sample size 𝑛 = 5 is the smallest sample size such that 𝑃𝑖𝑡𝑒𝑚,𝐷(𝑛, 𝑟) ≥ 0.2 

for all 𝑟 from the set {⌈𝑀 𝑥̅⁄ ⌉, … , 𝑁} (see Figure 6), for 𝑛 = 4 even 𝑃𝑖𝑡𝑒𝑚,𝐷(𝑛, 𝑟) drops below 0.2 for all 

𝑟 at about 150 and larger, see Figure 7. 

 

Figure 7: 𝐷𝑃(4, 𝑟), 𝑃𝐷(4, 𝑟) and 𝑃𝑖𝑡𝑒𝑚,𝐷(4, 𝑟) as a function of the number 𝑟 of falsified items. 
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Figure 7 shows that if 𝑛𝐼𝐴𝐸𝐴 is used as the sample size in 𝑆𝑃𝑖𝑡𝑒𝑚,𝐷, then the required DP is achieved at 

least for a wider range of diversion strategies compared to that of 𝑆𝑃𝑖𝑡𝑒𝑚. This property is a nice benefit 

of using 𝑆𝑃𝑖𝑡𝑒𝑚,𝐷 instead of 𝑆𝑃𝑖𝑡𝑒𝑚. 

5 Summary and future work 

If 1) the current detection event given by Eq. (4) is generalized to the “detection” event of Eq. (15) and 

if 2) a higher FAP with respect to 𝑆𝑃𝑖𝑡𝑒𝑚 and  𝑆𝑃𝐷 does not concerns too much, then the combined 

sampling plan 𝑆𝑃𝑖𝑡𝑒𝑚,𝐷 should be applied because it leads – at least for the numerical examples 

considered so far – to a remarkable reduction of the sample size (from 𝑛 = 27 to 𝑛 = 5) while the 

required detection probability is still achieved. In case that 𝑛𝐼𝐴𝐸𝐴 is used as the sample size in 𝑆𝑃𝑖𝑡𝑒𝑚,𝐷, 

then the required DP is achieved for wider range of diversion strategies compared to that of 𝑆𝑃𝑖𝑡𝑒𝑚. 

In future work the results of this paper must be further investigated for a wider range of safeguards 

relevant input parameters 𝑁, 𝑛, 𝛿, 𝑀 and 𝑥̅, and need to be generalized to the case that up to three 

measurement methods are applied in a stratum. 

Some thoughts should be invested in the modified “detection” event of Eq. (15) and whether current 

IAEA approaches allow for such a modification. 

Also, it must be elaborated of how to procced with a significant value of the relative stratum 𝐷-statistic 

and whether – as in the item-by-item test sampling plan – a further investigation will take place. 
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