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ABSTRACT  

The International Atomic Energy Agency (IAEA) employs well-established statistical methods to 

assess the effectiveness of its inspection plans on a multi-defect stratum by evaluating defect detection 

probability (DP). DP is defined as the chance of identifying at least one defect when a defective 

stratum is subjected to a specific inspection plan. So far, deterministic methods using statistical 

distributions and a stochastic method using pseudo-random generators have been developed to 

compute DP within some finite time. The stochastic method is universally applicable to any inspection 

scenario, and it can generate DP results with user-specified standard error. Initial attempts were made 

to train machine learning (ML) models on the stochastic DP results and their respective inspection 

parameters to predict DP. Inspection parameters like item types, instrument types, and identification 

probabilities vary in length depending on the applied diversion strategy and inspection plan. These 

variable length parameters pose a major challenge in developing ML models, which require a fixed 

number of input parameters for training and prediction. The paper explores two ways to convert 

variable-length parameters to a fixed number of parameters; these are zero-padding and encoding 

techniques. Zero-padding limits the applicability of models to a few inspection scenarios limiting the 

variable length parameters to a fixed length, and zeros are used for missing information. On the other 

hand, Encoding techniques do not limit the model applicability; instead, perform certain operations 

on the variable length parameters to generate new encoded data with fixed parameters that are used 

to train ML models. The paper discusses the zero-padding scheme and two different data encoding 

techniques and compares the performances of ML models trained on said techniques. The R2 scores 

of zero-padded models and encoded models are evaluated on unseen instances of the test dataset. 

Upon comparison, show the superior generalization power of encoded models over zero-padded 

models in predicting DP.  

INTRODUCTION  

The IAEA’s comprehensive safeguards agreement [1] (CSA) obliges a nuclear state or country to 

subject its nuclear materials inventory to IAEA safeguards operations. The safeguards operations 

allow IAEA to achieve its technical objective [2] of detecting and deterring nuclear material diversion 

from peaceful purposes to military use. The nuclear inventory of a state is spread among its nuclear 

facilities and is reported to IAEA by the state, organized as nuclear strata with items/batches based 

on similar characteristics like material type, physical state, etc. As part of safeguards operations, 

IAEA uses a combination of nuclear material accountancy data with surveillance, seal checks, and 

random inspections to ensure the reported material matches the material present in the strata. Owing 

to the impracticality of inspecting every item in a stratum, random inspections of a fixed number of 

items (sample size) are carried out instead based on a specified inspection plan. These inspections 

involve randomly selecting a specified number of items from the stratum and identifying defects 

(items from which material has been removed) in the selected items using the instruments and 



methods specified in the inspection plan. Each inspection plan has a certain chance of identifying the 

defects in the stratum called defect detection probability (DP).   

The DP is defined as the probability of identifying and detecting at least one defective item 

when a defected stratum is subjected to a specific inspection plan. DP acts as an effectiveness metric 

of the IAEA inspection plans and allows IAEA to develop and optimize their inspection plans 

depending on the anticipated diversion strategies and probable pathways. The diversion strategy is 

defined as the mechanism by which the proliferator would divert a certain amount of nuclear material 

(SQ) from the items within a stratum, thereby introducing defective items within the stratum. 

Depending on the applied diversion strategy, the original items in the stratum inventory are converted 

into defects of various types and numbers. The IAEA employs models to evaluate the probability of 

detecting these defects (DP) when an inspection plan is applied to the defected stratum. Figure 1 

contains two limiting case diversion strategies that will be used in this paper. 

 
Figure 1. IAEA limiting case diversion strategies 

 

The IAEA’s random inspection process is modeled as random selection and defect identification 

stages. In the random selection stage, there is a chance of selecting at least one defective item when 

a certain number of items are randomly sampled from the entire stratum. This chance is called defect 

selection probability (SP). Its value increases with the number of defects in the stratum or increases 

with the number of randomly selected items (sample size) from the stratum. In the defect 

identification stage, the selected items or item is subjected to instrument measurements. There is a 

chance associated with identifying the measured item as a defect called defect identification 

probability (IP). IP depends on the instrument or method’s response curve and the associated 

parametric uncertainties like relative standard deviations (RSDs). Hence, the defect detection 

probability DP is a function of defect selection probability SP and defect identification probability IP. 

In safeguards literature, the evaluation of DP is traditionally achieved case-by-case using statistical 

distributions [3]. Recently, two universal DP models were developed, one deterministic and one 

stochastic model, that can evaluate DP for any inspection scenario and diversion strategy. The 

deterministic model [4] evaluates DP, equation (1), for each probable out determined using the 

conditional tree diagram. Whereas the stochastic model [5] uses pseudo-random generators and 

equation (2) to evaluate DP.  

Deterministically, DP = ∑ 𝑺𝑷𝒊

𝒊 ∈ 𝑨𝒍𝒍 𝑺𝒆𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝑶𝒖𝒕𝒄𝒐𝒎𝒆𝒔

∗ 𝑰𝑷𝒊 (1) 



Stochastically, DP =
𝟏

𝑵
∑ 𝑰𝑷𝒊

𝒊 ∈ 𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅 𝑶𝒖𝒕𝒄𝒐𝒎𝒆𝒔

 (2) 

 

In existing safeguards literature, the usage of machine learning in predicting DP hasn’t been explored 

before. The main reasons for exploring machine learning for DP prediction are that ML prediction 

models tend to be faster than deterministic or stochastic models. Once trained, an ML model with 

reliable accuracy can be used in mobile apps to provide field inspectors with faster and reliable 

predictions. The paper describes the initial attempts, associated problems, and solutions to predict DP 

using various machine-learning regression techniques.  

OVERVIEW OF ML CONCEPTS  

The stratum-level detection probability (DP) is a continuous-valued probability function with values 

ranging from 0 to 1. The ML methods that predict a continuous value based on an input or multiple 

input parameters fall under Regression methods. Table 1 contains descriptions of various regression 

ML methods available as open-source classes in Python’s sci-kit learn [6] and xgboost [7] modules. 

Table 1. Various regression-based ML methods from sci-kit learn and xgboost modules 

S.No ML Methods Description Explored Hyperparameters 

1. 

Ordinary Least Squares 
method 

(OLS) 

OLS method is a global minimum method that will provide a 

unique set of model parameters obtained by minimizing the sum of 
squares of residuals. 

N/A 

2. 

Linear Non-Linear 
methods  

(LNL) 

In linear/non-linear methods, the input parameters (xi) are directly 
mapped to output parameter y as follows: 

𝑦 = 𝑤0 + ∑ 𝑤𝑖𝑓(𝑥𝑖) 

Linear or Identity: Linear bottleneck f(x) = x 

Logistic: the logistic sigmoid function f(x) = 1/(1+exp(-x)) 

Tanh: the hyperbolic tan function f(x) = tanh(x) 

Relu: the rectified linear unit function f(x) = max(0, x) 

N/A  

3. 
Deep Neural Network 

(DNN) 

In DNNs, the input layer (xi) is mapped to the output layer y via 

multiple (at least two) hidden layers of interconnected neurons. The 

hidden layer neurons use relu activation, and the final layer uses 
identity activation. 

Hidden layers and neurons:  

[(), (17), (17, 17), (17, 17, 17), (34), 

(34, 34), (34, 34, 34), (51), (51, 51), 

(51, 51, 51), (68), (68, 68), (68, 68, 
68), (85,85, 85, 85)] 

4. 

Support Vector 

Regression 

(SVR) 

SVR aims to find a hyperplane that best fits the observed data 

within user-specified residual parameters such as allowed error 
margin ‘e’ and tolerance ‘C’ to values outside margins. 

Kernel: [‘linear’, ‘rbf’, ‘poly’] 
C: [1, 1.5, 10] 

Gamma: [1e-7, 1e-10] 

Epsilon: [0.01, 0.5, 10] 

5. 

Gradient Boosting 
Regression 

(GBR) 

GBR is a tree-based boosting ensemble technique that iteratively 

builds new tree estimators to cover the shortcomings of estimators 
in the previous iteration. A tree can be summarized in simple terms 

as nested if-else conditions made of input parameters along with an 
assigned output value. 

Learning rate: [0.5, 0.1, 0.05] 
No of estimators: [100, 300, 500] 

Max Tree Depth: [3, 6, 9] 

6. 

Extra Gradient Boosting 
Regression 

(XGBR) 

XGBR is also a tree-based boosting ensemble technique like GBR, 

with added features like regularization, tree pruning from the max 
depth, missing value handling, etc. 

Learning rate: [0.5, 0.1, 0.05] 

No of estimators: [100, 300, 500] 

Max Tree Depth: [3, 6, 9] 

 Table 2 describes various metrics to train ML models and evaluate model performances. The 

SSR, MAE, and RMSE are suited for both training and performance evaluation. It is customary to 

generate two datasets, each with unique instances. The instances from the first dataset are used for 

training various ML models and validating their performances during training. The unseen data 



instances from the second dataset are then used to test the generalization capabilities of trained models 

by evaluating their performance metrics. 

Table 2. Formulae and description of various ML metrics. 

S.No Metric Formulae and Description 

1. Residual 𝑅𝑖  =  𝑦𝑖  −  𝑦̂𝑖  

2. 
Sum of Squares Residual 

(SSR) 

𝑆𝑆𝑅 =  ∑(𝑦𝑖  − 𝑦̂𝑖)2

𝑁

𝑖=1

 

SSR takes values from 0 to +∞. The smaller the value 

of the SSR, the better the model's performance. 

3. 
Mean Absolute Error 

(MAE) 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖  − 𝑦̂𝑖|𝑁

𝑖=1

𝑁
 

MAE takes values from 0 to +∞. The smaller the value 

of the MAE, the better the model's performance. 

4. 
Root Mean Square Error 

(RMSE) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖  − 𝑦̂𝑖)2𝑁

𝑖=1

𝑁
 

𝑅𝑀𝑆𝐸 takes values from 0 to +∞. The smaller the value 

of the 𝑅𝑀𝑆𝐸, the better the model's performance 

𝑤ℎ𝑒𝑟𝑒, 
𝑦𝑖  = actual label value of ith instance 

𝑦̂𝑖 = predicted label value of ith instance 

k-fold Cross-validation (k-fold CV) 

During training, any ML method has multiple parameters that can be varied, which might 

either improve or worsen the performance. The process of varying parameters in search of a better 

model is called hyper-parametric tuning. Due to the stochastic nature of solvers and the random initial 

weights and coefficients, during development the resulting model using the same hyper-parameters 

will differ with varied performances. To quantify and reduce the variance of performance metrics, a 

data sampling technique called k-fold cross-validation [8] is used. This approach involves randomly 

dividing the training dataset into k groups of approximately equal size. In the first iteration, the first 

fold is treated as a validation set, the model is fit on the remaining k − 1 folds, and performance is 

evaluated on the first fold. Similarly, models are trained and evaluated for each fold, and k 

performance metrics are quantified and plotted with mean and standard error. This approach allows 

better quantification and comparison of performances across various ML algorithms. When combined 

with hyper-parametric tuning, the k-fold CV method provides a mechanism to identify the optimal 

parameters within the ML algorithm with the highest performance. In general, with the choice of k in 

k-fold cross-validation, there is a bias-variance trade-off associated with it. It is typical to choose 5 

or 10 as the value for k, as these values have been shown empirically to yield performance metrics 

that suffer neither from excessively high bias nor very high variance [8]. 

EXPLORED METHODOLOGIES AND THEIR WORKINGS 

This section explores the application of various machine-learning techniques in predicting the 

stratum-level DP. Table 3 contains all the parameters or features taken as the inputs by universal DP 

models [4,5]. The same parameters are used to develop ML DP models to predict DP. Generally, ML 

models use constant number of inputs parameters. The dimensions of DP input parameters such as 

measurement type numbers, item type numbers, and identification probabilities vary depending on 

the applied diversion strategy and inspection plan. This poses a challenge to develop a ML-based DP 



models. Two different approaches are considered here to address this difficulty. The first approach 

uses zero padding to fix the number of input variables, and the models developed using this approach 

are called zero-padded models. The second approach uses encoding techniques to fix the number of 

input variables, and the models developed using this approach are called encoded models. 

Table 3. Inputs and output parameters for developing ML DP models 

S.No Parameter Type, Dimensions, Range Feature/Label 

1. Total Items (N) int, 1, [0, ∞) Input Feature 

2. Total Measurements (n) int, 1, [0, N] Input Feature 

3. 
Measurement type numbers  

(n1, n2, …, nm) 

Integer array of size m, 

∀ 𝑛𝑖 ∈ [0, 𝑛] 

∑ 𝑛𝑖

𝑚

𝑖=1

= 𝑛 

Input Feature 

4. 
Item Type numbers 

(I1, I2, …, Ik) 

Integer array of size k, 

∀ I𝑖 ∈ [0, 𝑁] 

∑ 𝐼𝑖

𝑘

𝑖=1

= 𝑁 

Input Feature 

5. 

Identification Probability Matrix 

IP m by k 

(

IP11 IP12 ⋯ IP1k

IP21 IP22 ⋯ IP2k

⋮
IPm1

⋮
IPm2

⋱
⋯

⋮
IPmk

) 

Probability matrix of 
dimensions k by m 

∀ IP𝑖𝑗 ∈ [0, 1] 
Input Feature 

6. 
Stratum-level Defect Detection 

Probability (DP) 

Probability value 

𝐷𝑃 ∈ [0, 1] 
Output Label 

 The zero-padding and encoding procedures to convert variable input features of Table 3 into 

a fixed number of features for DP model development are described next. 

Zero-padding 

Zero-padding limits the problem to a few scenarios by fixing the length of parameters and 

using zeros for missing parameters. The number of item types ‘k’ and the number of instrument types 

‘m’ vary depending on the inspection scenario. Here we limit the problem to scenarios that yield three 

item types and three instrument types by fixing ‘k’ and ‘m’ to 3. Table 4 describes the zero-padded 

parameters obtained by imposing this constraint to the problem. A total of 17 features are evaluated 

from zero-padded parameters and used as inputs for the ML models to predict DP. During the data 

generation process, the scenarios with missing item or instrument type entries are replaced with zeros; 

hence, the name zero-padding.  

Table 41. Constraining variable length parameters for developing zero-padded models 

S.No Original parameters Zero-padded parameters No. of features 

1. Total Items (N) Total Items (N) 1 

2. Total Measurements (n) Total Measurements (n) 1 

3. 
Measurement type numbers  

(n1, n2, …, nm) 

m is set to 3 

Measurement type numbers 

 (n1, n2, n3) 

3 

4. 
Item Type numbers 

(I1, I2, …, Ik) 

k is set to 3 

Item Type numbers 

(I1, I2, I3) 

3 

5. Identification Probability Matrix k =3, m = 3, k x m = 9 9 



IP m by k 

(

IP11 IP12 ⋯ IP1k

IP21 IP22 ⋯ IP2k

⋮
IPm1

⋮
IPm2

⋱
⋯

⋮
IPmk

) 

IP 3 by 3 

(
IP11 IP12 IP13

IP21 IP22 IP23

IP31 IP32 IP33

) 

 Total Number of Features 17 

Encoding Procedures 

 
Figure 2. Two different Encoding procedures to convert original parameters into fixed parameters 

 

The zero-padding procedure limits the problem to a few scenarios by fixing the length of 

parameters and using zeros. For the encoding procedure, the information present in the variable length 

parameters is encoded to yield a fixed number of parameters. It involves building a distribution of 

values by combining variable-length parameters and the distribution parameters (mean, variance, etc.) 

are used as the encoded parameters. The encoding process allows greater flexibility as it does not 

restrict the number of parameters and hence could be applied to any inspection scenario. Figure 2 

describes two different procedures to encode original features to fixed features. The ItemType Nos, 

Instrument Measurement Nos, and IP Matrix are the variable length features that vary from scenario 

to scenario. In V1 Encoding, the ItemType Nos array and Instrument Measurement Nos array are 

normalized to values from 0 to 1 by dividing them by total items (N) and the total measurements (n), 

respectively. Values are generated by multiplying of normalized itemType Nos array with each 

column of the IP Matrix followed by multiplication of normalized Instrument Measurement Nos array 

with each row of the IP Matrix. The distribution matrix is generated. The distribution parameters like 

mean, variance, skewness, and kurtosis are evaluated, along with total items, and the N_by_n ratio is 

taken as encoded features to train V1 Encoded ML models. Unlike V1 Encoding, which develops 

encoding distribution using a multiplication scheme, V2 Encoding uses a duplication scheme to 

develop the required encoding distribution. Each element of the IP Matrix, say IPmk, is duplicated by 

the number specified by the ItemTypeNos Ik and MeasurementNos nm product. The distribution 

parameters are taken to train V2 Encoded ML models. 

 



RESULTS AND DISCUSSION 

 Multiple DP models are developed for the six ML methods classes and several 

hyperparameters described in Table 1. The 10-fold cross-validation technique is used to compare DP 

model performance on the training data set. For training data set, the OLS method minimizes the sum 

of squares of residuals (SSR) deterministically, for the remaining ML method classes, mean absolute 

error (MAE) is minimized using the Adam stochastic gradient solver [11]. For performance comparison, 

the root mean square error (RMSE) is computed for the DP models using training and testing datasets. 

The RMSE scores evaluated on the training dataset gives the trained model performance on known 

instances, whereas the RMSE scores evaluated on the testing dataset give the generalization ability 

of trained models on unseen data instances. The RMSE metric shares the total error among all 

instances equally. The smaller the value of RMSE, the better the model performance. Since the DP is 

a probability function with values between 0 and 1. An RMSE value of 0.8 is interpreted as predicted 

DP values diverging from actual DP values by a probability of 0.8. For an ML model to make reliable 

DP predictions, its RMSE score should be less than 0.005 on unseen instances of the test dataset. 

Zero-padded Model Results 

The inspection scenarios of Table 6, subjected to Figure 1 diversion strategies, are used to generate a 

training dataset to train zero-padded models of various classes and parameters. One model is selected 

based on the RMSE score using 10CV training from each class. The criterion for selecting the best 

model is the lowest RMSE score. The performance (RMSE scores) of the selected models are 

evaluated using the unseen test dataset. The test dataset is generated from inspection scenarios of 

Table 7. Both the training and the test RMSE scores are shown in Figure 3.  

 
Figure 03. Performance comparison of class-wise best Zero-padded models during 10CV Training and on 

Test dataset. 

Encoded Model Results 

The same data instances from the zero-padded training dataset are encoded using procedures 

of Figure 2 to generate training datasets for encoded-V1 and encoded-V2 models. The inspection 

scenarios of Table 8, subjected to Figure 1 diversion strategies, are used to generate test datasets for 

performance evaluation of encoded-V1 and encoded-V2 models. Figures 4 and 5 show the RMSE 

scores of class-wise best encoded-V1 and encoded-V2 models during 10CV training and their 

performance on test dataset. A quick comparison of zero-padded and encoded model performance 



plots shows that the encoding process lowered RMSE scores for the encoded model results. Indicating 

improved performance of encoded models over zero-padded model for all classes. Note that both 

zero-padding and encoding methods used the same training dataset.  

 
Figure 04. Performance comparison of class-wise best Encoded-V1 models during 10CV Training and on 

Test dataset. 

 

Figure 05. Performance comparison of class-wise best Encoded-V2 models during 10CV Training and on 

Test dataset. 

Table 5 summarizes the performances of best-of-class-wise ML models on the unseen test 

dataset instances for three different procedures, i.e., zero-padding, encoding v1, and encoding v2. 

Compared to zero-padding, the encoding process improves the generalizing ability of all ML models 

on the test dataset. This inference is established by observing the reduction of RMSE scores for every 

type of ML model between zero-padding and encoding methods. The reduction in RMSE scores from 

V1 to V2 encoding procedure suggests that further improvements can be achieved with better 

encoding procedures and parameters.  

 



Table 5. Summary of best model performances (RMSE) on the unseen test dataset 

 OLS LNL DNN SVR GBR XGBR 

Zero-Padded 0.886 0.887 0.481 1.035 0.362 0.392 

Encoded V1 0.357 0.355 0.317 0.4 0.31 0.318 

Encoded V2 0.31 0.31 0.18 0.34 0.25 0.24 

  

CONCLUSION 

The ML models generally use a constant number of input parameters, whereas the DP problem 

inherently has varying input parameters. The work presented here provided solutions to fix the 

number of input parameters to develop working ML DP prediction models. Two different procedures, 

i.e., zero-padding and encoding, are investigated. The ML models are successfully developed for 

various classes and hyperparameters using both procedures. The results show that by applying 

encoding procedures, the models produce lower RMSE scores (better results) on both training and 

test datasets for all classes of ML models investigated in this work. The overall lowest RMSE score 

of 0.18 on the test dataset was evaluated from the Encoded-V2 DNN class best model. An RMSE 

score of 0.005 or less is desirable for high confidence in model reliability. Although promising, the 

value of 0.18 is still much greater than the desired RMSE score. Further work is proposed to develop 

better encoding procedures and to identify additional distribution parameters like mode and median, 

which could encompass more information to predict DP. The practical uses of ML-based DP 

prediction models are found to be limited at this stage, and further investigation is recommended. 

 

Table 6. ML Training dataset scenarios - stratum inventory, inspection plans 

Nuclear Inventory Inspection Plan 

Stratum ID Description Items Q% PU (SQ) HEU (SQ) LEU (SQ) NU (SQ) DU (SQ) H F D 
RSD 

H 
RSD F RSD D 

UFE EU 30B PROD CYL IN STORE 26 0   17.930   1 2 1 0.15 0.05 0.005 

UFN NU 48Y FEED CYL IN STORE 35 0    28.967   3 1  0.07 0.005 

UFN-H NU HEELS CYL IN STORE 40 0    0.009  1   0.15   

UFD DU 48Y TAILS CYL IN STORE 300 0     121.988 1 1 4 0.15 0.09 0.01 

SM1-E EU SAMPLES AND SLUDGES 163 0   0.015   1   0.15   

UFEP EU IN PROCESS CYL 9 0   8.299     1   0.005 

UFNP NU IN PROCESS CYL 6 0    2.298    1   0.005 

UFDP DU IN PROCESS CYL 2 0     0.804   1   0.01 

FF-1 Fresh Fuel in Dry Store 13728 0   13.176   3   0.15   

FF-1D Fresh Fuel Dummy in Dry Store 264 0     0.023 1   0.15   

FF-2D Fresh Fuel Dummy in Pond 264 0     0.023 1   0.15   

SF- Spent Fuel 223608 0 508.525  38.738   6   0.15   

SR- Pins in closed container 8 0 0.024  0.004   1   0.15   

UF- UF6 CYLINDERS 101 0   71.000   1 4 1 0.25 0.05 0.005 

PD1 UO2 & U3O8 Powders in Containers 2100 0   30.000   2 3 1 0.25 0.045 0.005 

PD2 UO2 & U3O8 Powder in Hoppers 25 0   7.800   1  1 0.25  0.004 

PL1 Scintered Pellets in Cans 2250 0   8.500   1  1 0.25  0.003 

PL2 Scintered Pellets in Racks 84 0   9.000     2   0.003 

FR1 Finished Fuel Rods 19640 0   23.000   3 3  0.25 0.026  

FF- Finished Assemblies 106 0   27.000   2 4  0.25 0.057  

SC1 CLEAN SCRAP 4540 0   17.800   1 2 1 0.25 0.08 0.04 

SD1 DIRTY SCRAP 2910 0   2.100    1   0.14  

FFH Fresh MTR  elements 1280 100  0.800    2   0.05   

FRH Fresh Moly targets 2000 0  0.380    1   0.05   

CFH Core MTR Fuel 480 100  0.300    3   0.05   

SFH Spent MTR Fuel 4800 100  1.050    5   0.05   

UFE1 N = 26;  n = 1 26 0   17.930   1   0.05   

UFE1 N = 26;  n = 2 26 0   17.930   24   0.05   

UFE1 N = 26;  n = 4 26 0   17.930   4   0.05   

UFE2 N = 26;  n = 6 26 0   17.930   6   0.05   

UFE3 N = 26;  n = 8 26 0   17.930   8   0.05   

UFE4 N = 26;  n = 10 26 0   17.930   10   0.05   

UFE5 N = 26;  n = 12 26 0   17.930   12   0.05   

UFE6 N = 26;  n = 14 26 0   17.930   14   0.05   

UFE7 N = 26;  n = 16 26 0   17.930   16   0.05   

UFE8 N = 26;  n = 18 26 0   17.930   18   0.05   

UFE9 N = 26;  n = 20 26 0   17.930   20   0.05   



UFE10 N = 26;  n = 22 26 0   17.930   22   0.05   

UFE11 N = 26;  n = 24 26 0   17.930   24   0.05   

UFE12 N = 26;  n = 26 26 0   17.930   26   0.05   

UFE13 N = 200;  n = 190 200 0   80.000   190   0.05   

Table 7. ML Testing dataset scenarios for evaluating the performance of Zero-padded models 

Nuclear Inventory Inspection Plan 

Stratum ID Description Items LEU (SQ) H F D RSD H RSD F RSD D 

U200_n5_1 N = 200;  n = 5 200 50.000 5   0.05   

U200_n5_2 N = 200;  n = [4 5] 200 50.000 4 1  0.05 0.005  

U200_n5_3 N = 200;  n = [3 1 1] 200 50.000 3 1 1 0.05 0.005 0.15 

U200_n4_3 N = 200;  n = [2 1 1] 200 50.000 2 1 1 0.05 0.005 0.15 

U200_n3_3 N = 200;  n = [1 1 1] 200 50.000 1 1 1 0.05 0.005 0.15 

U5000_n25_1 N = 5000;  n = 25 5000 100.000 25   0.05   

U5000_n25_2 N = 5000;  n = [20 5] 5000 100.000 20 5  0.05 0.005  

U5000_n25_3 N = 5000;  n = [15 5 5] 5000 100.000 15 5 5 0.05 0.005 0.15 

U5000_n20_3 N = 5000;  n = [10 5 5] 5000 100.000 10 5 5 0.05 0.005 0.15 

U5000_n15_3 N = 5000;  n = [5 5 5] 5000 100.000 5 5 5 0.05 0.005 0.15 

Table 8. ML Testing dataset scenarios for evaluating the performance of Encoded models 

Nuclear Inventory Inspection Plan 

Stratum ID Description Items LEU (SQ) H F D G K RSD H RSD F RSD D RSD G RSD K 

U200_n5_1 N = 200;  n = 5 200        50.000  5     0.05     

U200_n5_2 N = 200;  n = [4 5] 200        50.000  4 1    0.05 0.005    

U200_n5_3 N = 200;  n = [3 1 1] 200        50.000  3 1 1   0.05 0.005 0.15   

U200_n5_4 N = 200;  n = [2 1 1 1] 200        50.000  2 1 1 1  0.05 0.005 0.15 0.1  

U200_n5_5 N = 200;  n = [1 1 1 1 1] 200        50.000  1 1 1 1 1 0.05 0.005 0.15 0.1 0.25 

U5000_n25_1 N = 5000;  n = 25 5000     100.000  25     0.05     

U5000_n25_2 N = 5000;  n = [20 5] 5000     100.000  20 5    0.05 0.005    

U5000_n25_3 N = 5000;  n = [15 5 5] 5000     100.000  15 5 5   0.05 0.005 0.15   

U5000_n25_4 N = 5000;  n = [10 5 5 5] 5000     100.000  10 5 5 5  0.05 0.005 0.15 0.1  

U5000_n25_5 N = 5000;  n = [5 5 5 5 5] 5000     100.000  5 5 5 5 5 0.05 0.005 0.15 0.1 0.25 
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