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Abstract

Gamma spectrometry is a passive non-destructive assay method used to quantify radionuclides present in nuclear
objects. Basic methods using empirical calibration with a standard to quantify the activity of nuclear materials by
determining the calibration coefficient are ineffective on non-reproducible nuclear objects such as waste packages. Pack-
age specifications such as composition or geometry change from one package to another and exhibit large variability of
objects. The current standard quantification process uses numerical modelling of the measured scene with few available
data such as geometry or composition, in particular density, material, screen, geometric shape, matrix composition,
matrix and source distribution. Some of them are strongly dependent on package data knowledge and operator back-
grounds. The French Atomic Energy Commission (CEA) is developing a methodology to quantify nuclear materials
in waste packages and waste drums without operator adjustment and internal package configuration knowledge. This
method suggests combining a stochastic approach which uses, among others, surrogate models available to simulate the
gamma attenuation behaviour, a Bayesian approach considering conditional probability densities and prior information
of problem inputs, and Markov Chain Monte Carlo algorithms (MCMC) which solve inverse problems, with gamma ray
emission radionuclide spectra, and the outside dimensions of the objects of interest. The methodology has been tested
to quantify actinide activity with a low bulk density matrix, weakly attenuating compositions, without information on
the distribution of the source in terms of actinide masses and materials composing the drums. Activity uncertainties
are taken into account.

1 Introduction

The nuclear material quantification plays a crucial role in many branches of the nuclear industry such as nuclear fuel cycle,
waste management and facility decommissioning. Many nuclear detection techniques such as neutron detection methods
and gamma spectrometry are carried out to accurately quantify radionuclide masses included in a large number of more or
less complex objects. Some of the most widely used measurement systems for quantifying mass/activity of these materials
are high-purity germanium (HPGe) gamma-ray detectors [1]. Compared to NaI detectors, the dominant feature of HPGe
detectors is their excellent energy resolution around 1 keV at 662 keV, which is a very usefull feature for identification
and quantification of radionuclides such as 239Pu or 241Am. A numerical method [2] has been developed to propose
reliable and accurate characterization of HPGe detectors by combining 3D Monte Carlo particle transport simulation
codes such as MCNP 6.2 [3] with applied mathematical tools. This numerical detector model is constructed in order to re-
duce global uncertainties of final quantification results by increasing the detection capability knowledge of HPGe detectors.

To identify and quantify gamma emitting nuclides included in different kind of objects, such as nuclear waste packages,
one needs to calculate the activity A by :

A =
S(E)

ε(E)tIγ(E)
, (1)

where:

� E : Energy (MeV)

� A : Activity of a radionuclide of interest (Bq)

� S(E) : Net counting area of the full energy peak at the energy E (counts)
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CEA/DAM/VA, F-21120 Is-sur-Tille (e-mails: alois.clement@cea.fr, nicolas.saurel@cea.fr).
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� Iγ(E) : Branching ratio of radionuclide at the energy E

� t : Acquisition duration (s)

� ε(E) : Absolute efficiency coefficient at the energy E, also called attenuation law

which allows the mass m of the radionuclide of interest to be calculated with:

m =
A

Am
, (2)

where:

� m : Mass of the radionuclide of interest included in the measured object (g)

� A : Activity of the radionuclide of interest (Bq)

� Am : Specific activity of the radionuclide of interest (Bq/g)

The ε(E) coefficient is related to the capability of a measured object to reduce the gamma signal coming from a nuclear
material of interest. It depends on object features such as internal layout, screens, density, position of the gamma source
relative to the HPGe detector, internal materials and energy. Though the S(E) spectrum net extracted areas can be easily
determined with accuracy [5], calculation of ε(E) is a difficult process for complex objects in terms of internal layout and
composition such as nuclear waste drums [2]. Current and common calculation methods use Monte Carlo simulation codes
as MCNP6 [3] to model measured scenes and approach as precisely as possible the real values of the ε(E) coefficient.
Several years ago, new kinds of nuclear numerical quantification methods dealing with applied mathematics and stochastic
approaches [6] proposed emulating outcomes of interest such as ε(E) to solve the inverse problem of quantification and
to estimate the mass distribution of a radionuclide of interest included in objects such as nuclear waste drums. In this
way, Carasco [7] proposes to couple gamma ray spectrometry and tomography in a Bayesian framework to characterize
radionuclides of interest such as 239Pu in nuclear waste. Moreover, Laloy et al. [8] introduce a Bayesian approach to
characterise activities of radioactive waste from Segmented Gamma Scanning (SGS).

Section II presents a new approach to the mass quantification problem by considering data of interest as random variables
using an MCNP-based surrogate for Bayesian inversion through an MCMC algorithm. Section III gives experimental
results considering a measurement database of nuclear waste drums. Section IV provides discussions and conclusions.

2 Bayesian theory applied to gamma spectrometry

2.1 Statistical quantification approach

The quantification process that is considered here aims to estimate the probability density function (PDF) of a radionu-
clide of interest of mass m. Let us suppose the radionuclide of interest is a multi gamma-emitter. Via specific software
for gamma spectrum analysis [9] [10], we obtain net extracted areas from a measured gamma spectrum. Let us assume
there are N net extracted areas gathered in vector S = {S(En), n ∈ [1, N ]}, relative to (En)n∈[1,N ] energies of the multi
gamma-emitter radionuclide, and X ∈ ΞD represents a D-dimension vector of inputs needed for the calculation of the
absolute efficiency calibration coefficients vector ε(X) = {εn(X), n ∈ [1, N ]} estimation.The X vector is composed of
variables impacting the detection efficiency: measurement distance, cylindrical dimensions (radius, height), proportion of
materials composing the cylinder (vinyl, iron, plutonium), bulk density, etc. Details are available in [6].

Hence, (1) and (2) lead to the following equation:

∀n ∈ [1, N ], S(En) = A εn(X) Inγ t = mAm εn(X) Inγ t (3)

Let us suppose that Yobs is the observation vector with Iγ , t and Am deterministic and known, defined as:

Yobs =
S

IγtAm
+ ξ = mε(X) + ξ, ξ ∼ N (0, σobs). (4)

In (4), ξ represents the Yobs observation uncertainty vector. Let us assume that all of its coefficients are related to normal
distributions centered at zero with σobs = (σobs,n)n∈[1,N ] as standard deviation vector. This condition is verified with a
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sufficient number of counts (central limit theorem).

In considering Yobs, m, ε(X), and X as random variables, or vectors composed of random variables, the marginal
PDF for m mass given Yobs, expressed as f(m|Yobs), is given by Bayes theorem written in terms of PDFs [11]. The
probability density f(m|Yobs) depends on joint PDF f(m,Yobs) and fYobs(Yobs) the marginal PDF of Yobs [2], as
expressed in the following equation:

f(m|Yobs) =
f(m,Yobs)

fYobs(Yobs)
∝ f(Yobs|m)π(m). (5)

The distribution π(m) is called prior distribution [11] and is typically based on hypotheses, experience, or subjective
opinion about m mass. Taking dependencies upon X into account leads to (6):

f(m|Yobs) ∝
∫
X

f(Yobs|m,X)π(m|X)π(X)dX. (6)

2.2 Hypotheses

The objective is to obtain an estimation of f(m|Yobs), the probability density of m mass given the Yobs vector. Let us
assume some hypotheses about necessary PDFs to provide the mass distribution:

� Yobs is a vector composed of N independent random variables Y obsn related to normal distributions:

∀n ∈ [1, N ], Y obsn |m ∼ N (µn(m,X), σn(m,X)2), (7)

with µn(m,X) and σn(m,X) respectively the mean and standard variation ;

� Let us assume there is a priori no dependence between m and X, and between the components of X. Hence, the
efficiency ε(X) does not depend on the m radionuclide mass. In this case, the prior distribution X = (Xd)d∈[1,D] can
be expressed as:

π(m|X)π(X) = π(m)π(X) = π(m)

D∏
d=1

π(Xd); (8)

� Each prior distribution provides information about its own random variable [11]. A well-known variable is associated
with tight normal prior distributionN (µ0, σ0), and thus it provides information about variable behaviour. A variable
with no real information, such as m mass or ρ density of the object, is associated with uniform prior distribution
U(xmin, xmax). This method makes it possible to control real knowledge about the measured object and test different
hypotheses on unknown variables.

2.3 MCMC sampling and surrogate models

The calculation of the conditional PDF of m f(m|Yobs) leads to the evaluation of the integral over X appearing in
(6). When the dimension of X is relatively high, directly computing the integral given by (6) is hardly feasible. A
solution to get around the problem is to sample m mass conditional PDF by using Markov Chain Monte Carlo (MCMC)
methods [12] [13]. The Metropolis-Hastings algorithm allows us to sample the mass m and X components PDFs by using
Markov Chain theory [14]. This method typically needs several tens of thousands of calls to the simulation code providing
evaluations of the forward model provided by (4), in which the efficiency should be evaluated by a Monte Carlo particle
transport simulation, e.g. with MCNP. Because of the computational intractibility to rapidly evaluate ε(X) directly with
the particle transport code MCNP6, a Kriging surrogate model [15] [16] [17] is proposed to emulate it. A surrogate
model [18] requires a limited number of calls to the code, which are gathered in a design of experiments (DoE), in order
to first accurately and quickly build an outcome of interest function M , and finally predict new values of interest such as:

∀X ∈ ΞD, ε(X) ≈M(X). (9)

A practical and well-known DoE building technique is Latin Hypercube Sampling (LHS) [19] [20]. This kind of DoE
gives very interesting space filling properties by dealing with different criterion maximization such as the minimax crite-
rion [21]. The M model construction required 500 experiments with MCNP and around 16 hours of total computation
time with 72 processing cores (Intel®Xeon(R) CPU E5-2699 v3 @ 2.3 GHz x16 (x2)). The Kriging computation time was
about 1 second (1 core). It was built with DiceKriging and DiceOptim libraries [15] using the R programming language [22].
The surrogate is built with the Matern 5/2 covariance function without nugget effect.
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2.4 Calculation of the f(m|Yobs) conditional probability density

The objective is to obtain m mass conditional PDF f(m|Yobs). Considering (6-8-9) and the given hypotheses detailed
below, f(Yobs|m) can be written as :

f(Yobs|m) =

N∏
n=1

f(Y obsn |m) =

N∏
n=1

1√
2πσn

e
− (µobsn −µn)2

2σ2n , (10)

where (µn)n∈[1,N ] and (σn)n∈[1,N ] are determined by considering the uncertainty of the net extracted area vector S from

(4). Here, (µobsn )n∈[1,N ] vector represents observation inputs coming from the areas extracted from the gamma spectrum.

Due to its calculation process, which uses the Kriging emulation method presented above, the ε(X) random variable
vector can be written as following:

ε(X) = νM (X) + σM (X)δσ + emodel(X)δe, (11)

δσ ∼ N (0,1N), δe ∼ N (0, σ2
model),

with νM (X) = (νMn (X))n∈[1,N ] the predictive mean vector of ε(X) and σM (X) = (σMn (X))n∈[1,N ] its standard deviation
vector coming from the M Kriging surrogate model from (9). emodel(X) represents the model error. It should be noted
that this uncertainty is assumed to be insignificant but it is retained in the calculation process. It should also be noted
that uncertainties on the necessary MCNP6 values for Kriging model construction are taken into account on a point by
point basis. Consequently, this error does not appear in (11).

Hence, (4-11) let us express Yobs PDF from Y obsn PDFs:

∀n ∈ [1, N ], Y obsn |m ∼ N (µn, σ
2
n),

µn = mνMn (X), (12)

σ2
n = m2(σMn (X)2 + σ2

model) + σ2
obs,n. (13)

To finish, considering (6-8-11-12-13), the m mass conditional PDF can be expressed as follows:

f(m|Yobs) ∝
∫
X

N∏
n=1

1√
2πσn

e
− (µobsn −µn)2

2σ2n π(m)

D∏
d=1

π(Xd)dX. (14)

The desired m mass conditional PDF may also be estimated by Metropolis-Hastings algorithm as explained below.

2.5 About the ξ random variable

Henceforth, the aim is to consider m mass PDF and to sample it with MCMC methods such as the Metropolis-Hastings
algorithm. Nevertheless, a remaining variable has to be approached. Because of the difficulty to accurately quantify the
σobs standard deviation vector appearing in (4) and depending on the spectrum area extraction method, two hypotheses
(H1 and H2) about it are possible :

H1 : ξ ∼ N (0, σobs = αYobs), α ∈ [0, 1], (15)

H2 : ξ ∼ N (0, σobs = σ1N), σ ∈ R. (16)

The first hypothesis H1 proposes making the σobs vector proportional to observable values (15). In the second hy-
pothesis H2, σobs is constant and equal to an arbitrary value σ for all N components (16).

3 Experimental results

3.1 Hypotheses

The stochastic quantification method has been coded with Python3.7 [23]. The MCMC algorithm is a Random Walk
Metropolis-Hastings algorithm. [13] A custom implementation was entirely coded by ourselves without an existing pack-
age. The first hypothesis H1 (15) is considered with α = 0.05. All of the net extracted area uncertainties considered
here are less than 5%. This uncertainty was also fixed to 5% to simplify the calculations. To test the proposed Bayesian
approach of multi gamma-emitter radionuclide quantification, a nuclear waste drum measurements database was used.
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This database comes from MADAGASCAR, a Segmented Gamma Scanning [24] [25] nuclear measurement system used
by the CEA to identify and quantify radionuclide activities in waste drums before sending them to appropriate outlets.
The technical features of the drums to be considered by the MADAGASCAR system are :

1. Detection limit about 1 MBq with maximum accepted activity about 200 GBq

2. Relative bulk density of drums in [0, 0.4]

3. 100 and 200 litre nuclear waste drum type

4. Fixed measuring distance

5. The standard deviations of measurements is set at ± 42% (2σ)

The standard deviations about ±42% is a standard value provided by a global validation study of MADAGASCAR.
The system uses a radioactive source to obtain transmission coefficients of drums and to evaluate the standard calibration
efficiency. The MADAGASCAR quantification method is COFRAC [26] accredited.

The multi gamma-emitter radionuclide of interest to be quantified is 239Pu. Here, the objective is to test the capa-
bilities of the stochastic method by comparing quantification results of 239Pu activities between the described Bayesian
approach and the MADAGASCAR system quantification results.

To do so, a database of 242 measurements obtained by MADAGASCAR in 2017 on 100 litre drums was used. The
HPGe detector of MADAGASCAR was a Broad Energy Germanium detector (BEGe) sold by Canberra (BE2820). The
distribution and the form of the 239Pu masses in drums are unknown. Moreover, the method ignores the materials com-
posing the drums of the database. The drums are composed of lightweight materials (vinyl plastics, papers, PVC, etc.)
and heavier materials such as metals (iron, steel, aluminium, etc.).

Each MADAGASCAR measurement considered in the base leads to :

1. APu
239

M : MADAGASCAR declared activity of 239Pu

2. Gross and net weights of 100 litre drums

Moreover, each measurement of the database has its own acquisition gamma spectrum derived from MADAGASCAR.
Also, the input data of the stochastic method are :

1. S
239Pu
i : Net extracted areas of the ith 239Pu energies of interest

2. Acquisition duration

3. Measurement distances

4. Drum volume (100 litres) and dimensions (radius and height)

5. Bulk density

The 239Pu energies of interest are 94.66, 129.29, 203.55, 345.01, 375.05 and 413.71 keV. Peaks that are absent are
ignored by the calculation procedure. The measurement distance and drum dimensions are identical for all elements of
the database, respectively 58.4 cm and 23 cm of radius and 68 cm of height. These data are used by the method as a
priori objective, i.e. related to Gaussian prior probability densities with known variances (2.2).

Concerning the efficiency response of the germanium detector, this is obtained by modelling with a Kriging surrogate
model. The design of experiments used is similar to that built for modelling the efficiency of the measurement scene
(LHS). The MCNP6 calculation code is used to build a digital twin of the detector via the use of As Built plans of the
detector provided by the manufacturer.
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3.2 About statistics

The convergence process of the MCMC chains is investigated visually in Fig. 1.

The experimental validation process is based on the following objectives :

1. Repeatability, reproducibility

2. Linearity - Validation

3. Coverage

4. Comparison

Each item is definied in Table 1.

The statistical estimators used to evaluate the stochastic method quantification results and to compare to the MADA-
GASCAR measurement results are :

1. The mode of the 239Pu estimated mass probability distribution obtained via a log-normal fit : the data obtained by
the stochastic method represent the posterior probability density functions of 239Pu masses, the mode estimator of
such distributions therefore represents the most probable mass proposed by the stochastic method. The capability of
the fit to properly describe the probability density is assessed using Quantile-Quantile plot (QQ-plot), Probability-
Probability plot (PP-plot) and by comparing the empirical and theoretical Cumulative Density Functions (CDF).

2. The 2.5% and 97.5% quantile values, leading to the 95% confidence interval : these two estimators were chosen due
to the skewness of the probability distributions obtained by the stochastic method.

The effective posterior samples considered for the log-normal fit were chosen in getting 1% of the estimated posterior
PDF, composed by the 35 independent MCMC chains. These samples are considered to be independent after appropriate
thinning (one sample every hundred). The burn-in of the MCMC chains have been removed. The MCMC algorithm was
tweaked to have an acceptance rate around 30% [14]leading to around 15000 iterations per chain. The number of effective
posterior samples forming the estimated posterior PDF is about 5000.

Table 1: Experimental Statistical Criteria

Criteria Methodology Data

Repeatability, repro-
ducibility

Repeat the method for 10 ramdomly selected cases
and analyse standard deviations (1σ) of the mode
estimator.

MADAGASCAR database (10 items).

Linearity - Valida-
tion

239Pu mass PDF evaluation of a set of standard
sources without matrix effect (empty drums). Cal-
culation of 68%CI of mass PDF.

239Pu standard sources (6 items)

Coverage Mass PDF recovery assessment obtained by the
stochastic method with the 95%CI returned in by
MADAGASCAR.

MADAGASCAR database (242 items)

Comparison 239Pu PDF mass evaluation and verification of the
presence of MADAGASCAR results in estimated
PDF.

MADAGASCAR database (242 items)

PDF = Probability Density Function, 68%CI = 68% Con-
fidence Interval, 95%CI = 95% Confidence Interval

3.3 Repeatability, reproducibility

This part proposes checking the criterion of reproducibility (repeatability) of the stochastic quantification method. The
objective is to quantify the standard deviation associated with the use of the described stochastic method. This involves
using the method on the same objects several times in order to observe estimator variations.
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In order to statistically cover the domain of definition of standard deviations of the estimators sought, the method is
repeated at least 35 times (>30 for normal law conditions) on the 10 randomly selected items. The calculation time is set
at 15 min per sample and per measurement, i.e. 8 h 45 min for each item (35 samples). The results are summarized in
Table 2.

Table 2: Reproductibility and repeatability results

Item MMod(g) SDMod(%) MQ1(g) SDQ1(%) MQ2(g) SDQ2(%)

1. 3.22 3.16 1.89 1.87 7.85 12.1

2. 2.45 5.05 1.32 3.30 5.73 6.98

3. 4.73 7.08 2.71 3.38 12.1 22.1

4. 1.01 1.10 0.59 0.88 2.28 2.72

5. 0.63 0.97 0.37 0.79 1.37 1.80

6. 4.92 10.0 2.82 4.07 13.1 28.1

7. 2.39 2.31 1.42 1.69 5.30 5.47

8. 3.48 6.76 1.96 2.00 10.2 25.9

9. 1.41 1.96 0.80 1.19 3.40 6.02

10. 0.59 1.82 0.30 0.71 1.60 3.46

MMod = Mean of modes, SDMod = Relative standard
deviation of modes, MQ1 = Mean of quantiles at 2.5%,
SDQ1 = Relative standard deviation of quantiles at 2.5%,
MQ2 = Mean of quantiles at 97.5%, SDQ2 = Relative
standard deviation of quantiles at 97.5%

Fig. 2 shows the results of one of the ten measurements of the reproductibility study. The mean and standard devia-
tion of the standard deviations of the mode estimator are respectively 4.02% and 3.06%. Fig. 3 represents the standard
deviations of the three estimators tested as a function of the mode mass of plutonium estimated by the stochastic method.

Fig. 3 shows a strong dependence of tested estimator standard deviations on the mean of the estimated mode masses.
These standard deviations increase as the mean of the estimated mode mass increases. The standard devation of the
estimated mean mode mass is less than or equal to 10% for all 10 tested measurement cases. The standard deviations of
the quantile estimators vary from a few percent to almost 30%. Attempts were made with a computation time of 15 min.
An increase in the computation time (approximately one hour) would significantly reduce the standard deviations of the
three tested estimators. This study makes it possible to analyze the behavior of the variances of the three estimators.
On one hand, the results allow to have a great confidence in two estimators (modal and quantile at 2.5%). On the other
hand, the variance of the quantile at 97.5% must be considered with care.

3.4 Linearity - Validation

This section aims to check the linearity criterion of the stochastic method as defined in Table 1 and to validate the method.
To do this, 6 measurements of plutonium standard sources placed in empty drums were used. These measurements were
carried out on the MADAGASCAR system validation process. The total plutonium masses of standard sources are :
0.400, 0.800, 2.104, 5.619, 19.731 and 59.541 grams. The isotopy of plutonium is taken into account. The six energies of
interest of the 239Pu used in the stochastic method are unchanged [3.1]. For each of the plutonium standard sources, the
stochastic method processes for 60 min with 35 cores about of computing power. We used the same CPU as in Section. 2.3.
The calculation time of one hour makes it possible to limit the effects on the standard deviation of the estimators observed
in the reproducibility study.Fig. 4 and Table 3 summarize the linearity study results.

For all six measurement cases, the total plutonium mass is included in the 68% confidence interval (68%CI) of the
estimated mass PDF, i.e. in the interval bounded by the 16% and 84% quantiles. This is similar to 1σ interval of a normal
distribution. Since the drums are empty, the effect tested is the self-absorption of plutonium. This effect increases as the
amount of plutonium increases. The results show the capacity of the stochastic method to take this effect into account
for relatively large quantities of plutonium. This study also makes it possible to validate the method on standards.
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Table 3: Linearity and validation results

Item MPu(g) MQ1(g) MQ2(g) MMod(g) MQ3(g) MQ4(g)

1. 0.400 0.26 0.39 0.55 0.93 1.42

2. 0.800 0.36 0.69 0.98 1.95 2.94

3. 2.104 1.35 1.79 2.26 3.72 5.22

4. 5.619 2.93 3.94 5.27 7.91 11.3

5. 19.731 7.71 12.2 16.9 26.0 36.4

6. 59.541 20.8 33.3 45.6 71.0 99.8

MPu = Plutonium total mass of standard source,
MQ1 = Estimated plutonium mass at 2.5% quan-
tile, MQ2 = Estimated plutonium mass at 16%
quantile, MMod = Estimated mode of plutonium
mass, MQ3 = Estimated plutonium mass at 84%
quantile, MQ4 = Estimated plutonium mass at
97.5% quantile

3.5 Coverage

The purpose of this section is to verify the conformity of the coverage criterion as defined in Table 1. To do so, the
242 measurements of the MADAGASCAR database are used throughout the stochastic method. For each measurement,
the 239Pu net extracted areas of energies of interest are used throughout the stochastic method. The three estimators
proposed in 3.2 are used for each item. As a reminder, these are the mode of the estimated probability distribution and
quantiles at 2.5% and 97.5%. A reduced mass is obtained for each of the 242 samples by dividing the three estimators
tested by the mass of 239Pu returned by the MADAGASCAR system. We have:

M i
Red =

M i
Mod

M i
MADA

(17)

Note that for item #i, M i
Red represents the reduced plutonium mass, MMod is the estimated mode plutonim mass of the

stochastic method and M i
MADA is the MADAGASCAR estimated plutonium mass. Fig. 5 summarizes the coverage study

results. A recovery rate Ri is calculated for all items in the database. This rate represents the capability of the 95% CI
of the estimated conditional PDF to cover the 95% CI of MADAGASCAR results, i.e. ± 42% [3.1]. This rate is defined
as follows:

Ri =


min(

qi97.5−0.58M
i
MADA

0.84Mi
MADA

, 1), if qi97.5 ≥ 0.58M i
MADA

min(
1.42Mi

MADA−q
i
2.5

0.84Mi
MADA

, 1), if qi2.5 ≤ 1.42M i
MADA

0, otherwise

(18)

Note that for item #i, qi2.5 and qi97.5 represent respectively the 2.5% and 97.5% quantiles of the estimated posterior PDF.
The calculation results indicate that 92.3% of the tested measurements have a recovery rate greater than 0.5. In other
words, in more than 9 out of 10 cases, the 95% CI returned by the stochastic method represents at least 50% of that
returned by MADAGASCAR system. The results are presented in Fig. 6.

The results presented in Fig. 5 show a good response of the stochastic method between 0 and 2 g of plutonium. The
mode estimator is consistent and correctly represents the mass of plutonium obtained on the MADAGASCAR system.
Nevertheless, an average positive bias about 25% appears for increasing mode values of estimated plutonium mass.

3.6 Comparison

The purpose of this part is to check the comparison criterion as defined in Table 1. To do so, the 242 measurements of
the MADAGASCAR database are used. For each measurement, the mass mode is estimated by the stochastic method
and we check its presence in the 95% CI of MADAGASCAR mass results. We obtain that 91% of mass modes estimated
by the stochastic method are included in the 95% CI of MADAGASCAR mass results, so more than 9 out of 10 cases.
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4 Discussions and conclusions

The results obtained through the study of criteria as defined in Table 1 make it possible to estimate the PDF of plutonium
masses. This quantification is possible for low bulk density objects with a homogeneous emission source and considering
gamma multi-emitter radionuclides to quantify. The described stochastic method makes it possible to estimate the activity
or mass PDF of a radionuclide to be quantified. Although the experimental data describe distributions with larger vari-
ances than traditional nuclear measurement uncertainties, PDF are obtained without a priori information about measured
objects. The information supplied to the method comes from the acquisition spectrum or objective information sources
as measurement distance, object volume, etc. Beyond estimating a mass of radionuclide, the method makes it possible to
estimate the efficiency curve of the measurement scene. With this, it should be possible to use the proposed method to
quantify mono gamma-emitter radionuclides. Concerning the positive bias on the estimated mass of plutonium, we have
clearly identified it and are currently investigating potential causes.

The first difficulty of this study is that the MADAGASCAR data are measurements and not standards. Due to the
difficulty in generating standard sources of plutonium, this MADAGASCAR database was used. The second difficulty was
finding the right comparison tools. Indeed, the problem was to compare scalars (mass of MADAGASCAR plutonium and
uncertainties) with estimated conditional PDFs. The four proposed studies allow a correct comparison of the measured
and estimated data. Additional tools can be added.

Finally, the alpha value defined in Eq. 15 and set to 5%, to simplify the calculations, slightly overestimates the uncer-
tainty of the net extracted areas used. An automatic integration of these uncertainties within the code must be carried
out to refine the calculations.
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Figure 1: Convergence visualization. On the top : the 35 MCMC chains of 1 of the 242 measurements of the MADAGAS-
CAR system. On the bottom : the estimated mass of plutonium of the 35 MCMC chains for four different values of the
MCMC iteration. In red, the maximum and minimum values of the estimated mass of plutonium. In dotted, the mean of
the 35 estimated mass of plutonium.
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Figure 2: Example of reproducibility study results for one of the ten measurements. Black circles represent estimated
modes. Red circles represent estimated quantiles of 2.5% and 97.5%. Lines represent means of each estimator.

Figure 3: Standard deviations of mode and 2.5% and 97.5% quantile estimators as a function of the mean of the estimated
mode masses (Table 2). Dotted curves represent second order polynomial fits of each of the three sets of data.
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Figure 4: Linearity - validation study results of the stochastic method applied to six plutonium standard masses from
0 to 60 g. Red and blue segments represent respectively the 68% and 95% CI of estimated PDF of the total plutonium
mass by the method. The circle on each segment represents the estimated mode.
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Figure 5: Coverage study results. 1 - On top : Representation of the reduced plutonium mass for the 242 measurements.
Solid blue lines represent limits of the 95% CI reported by the stochastic method for all items from the database; the
dotted blue line represents the average of estimated modes. Solid red lines represent the 95% CI limits of all items from the
database. 2 - On the bottom : Representation of the estimated mode mass in function of the estimated MADAGASCAR
mass for all items from the database.
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Figure 6: Recovery rate results. In blue, the estimated conditional PDF of the plutonium masses (95% CI). In red, the
standard deviations of the MADAGASCAR measurements, i.e ± 42% (2σ).

15


