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Abstract

Gamma-ray measurements of effluents at the off-gas stack of a radiochemical processing
facility are used to train a set of classifiers to identify events associated with radioactive mate-
rial dissolution and processing. Datasets from two 238Pu subsequent campaigns involving the
dissolution of irradiated 237Np targets of possibly different source levels are utilized. Gamma-
ray count rates estimated through spectral analysis for isotopes of Iodine, Krypton, and Xenon,
have been utilized as classifier features in the past. The cumulative distribution functions (cdf)
of select isotopic count ratios during the dissolution of material and other periods show sepa-
rability, indicating their potential use as classifier features. The isotopic ratios, when properly
selected, have some inherent invariance and could be more stable indicators of dissolution
source activity than (solely) count rate estimates of individual isotopes. Hence classifiers us-
ing them as features are expected to be less sensitive to count rates which may vary across
dissolution campaigns especially given the difference in irradiation time and cooling time.
Multiple classifiers are trained to detect the dissolution events using seventeen isotopic count
rates. Additionally, classifiers are trained using six isotope ratios as features and the results of
various classifiers are compared. Under 5-fold cross validation, the classification performance
with isotope ratios closely matches the performance with count rates, for example, within
0.53% of the classification error for the best classifier and 0.03% for the classifier-fuser.

Primary Area: Nuclear Security & Physical Protection Technologies: Nuclear and Radiological
Detection Technologies

1 Introduction
Inferring the occurrences of events related to irradiated material dissolution operations at a radio-
chemical processing facility testbed were investigated using features derived from a radiometric
monitoring sensor system at the off-gas stack. A simplified version of on/off classification asso-
ciated with the dissolution process of an irradiated 237Np target used for 238Pu isotope production
has been studied in [1, 2], using gamma spectral measurements of effluents at the facility’s off-gas
stack. Count rate estimates within spectral regions of several volatile isotopes are used as the fea-
tures to train the classifiers in this research. The production processes of the fission products are
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governed by nuclear fission and radioactive decay. Therefore, in assuming the elemental trans-
port through the facility into the off-gas stack is constant, their isotopic ratios are inherently more
stable, in the context of learning theory, indicators of the source than just count rate measure-
ments, particularly when the detectors are prone to calibration drifts and calibration error. Hence,
classifiers that utilize isotopic ratios as features are expected to be less prone to over-fitting to
source levels reflected in count rates. In this paper, we present a study utilizing volatile isotope
ratios as features of these classifiers using datasets collected at the Radiochemical Engineering
Development Center (REDC), Oak Ridge National Laboratory (ORNL) for two 238Pu dissolution
campaigns.

The dissolution process of irradiated material at the REDC consists of multiple events, in-
cluding Al cladding removal by physical and chemical means, chemical dissolution of actinide
material, and follow on activities that involve mixing, boil down and re-work, among other oper-
ations. Radioactive isotopes are released and transported to the off-gas stack during these events,
which together constitute a complex time series of radioactive measurements. Their combined
gamma spectrum is measured using a High Purity Germanium (HPGe) sensor located at the off-
gas stack. The classification task is to use the radiometric measurements to infer the occurrence
of dissolution events, which is complex due to multiple factors including: multiple primary and
daughter isotopes with different half-life profiles; transport from the facility hot cells to the off-gas
stack; sensor and software limits in generating count rate estimates in the gamma spectral regions;
differences in events as the dissolution process is refined across campaigns; and other processes
occurring at the facility.

Eight different classifiers, namely, Classification Trees (CT), Discriminant Analysis Classifier
(DAC), Error Correcting Output Codes (ECOC), Ensemble of Trees (EOT), Kernel Method (KM),
k Nearest Neighbors (kNN), Naive Bayes (NB), and Support Vector Machine (SVM), are trained
first, and the top 3, namely, CT, EOT, and kNN, are fused by Ensemble of Trees Fuser (ETF), as
in previous works [2]. As a net result of feature and classifier fusion, combined with the incor-
poration of decay chain and isotope half-life information, this approach achieves 99% detection
with under 1% false alarm rate on the training set for kNN. This performance is mainly a re-
sult of the incorporation of physics information, namely, decay chains and half-lives, to fine-tune
the ML solution by selecting all seventeen isotope count rates and 2-day measurement window.
Count rates estimates of radionuclides, including isotopes of Iodine, Krypton, and Xenon, are uti-
lized as features for these classifiers, and their outputs as used as features for the classifier-fuser
ETF. However, the dissolution target amounts, irradiation time, and processing may differ among
the campaigns resulting in varying amount of effluent releases and thus varying associated count
rate estimates. The potential for these classifiers to over-fit to count rates motivated the study of
classifier features that are less prone to such variations.

The cumulative distribution functions (cdf) of select isotopic count ratios during the dissolution
and other periods show separability, indicating their potential to be effective as classifier features.
Thus, classifiers using them as features are expected to be less sensitive to variations in count rates.
The above set of classifiers are trained using six isotope ratios calculated from the count rates as
features, and the results of various classifiers are compared. Overall, for 5-fold cross validation,
the classification performance with isotope ratios closely matches the performance of count rate
estimates. For example, based on 2-day time window for the measurements spanning two 238Pu
campaigns, the classification error for the best classifiers is within 0.53% (namely, 0.1% of kNN
using count rates and 0.63% of EOT using ratios), and within 0.03% for ETF in both cases.

The organization of this paper is as follows. A radiochemical facility and the dissolution pro-
cess are briefly summarized in Section 2, and the HPGe sensor system and data processing are
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briefly summarized in Section 3 (more details can be found in [2]). The measurements and esti-
mates are described in Section 4; the count rate estimates and their ratios are discussed in Sections
4.1 and 4.2, respectively. The classifiers and fusers are described in Section 5; the classification
methods are briefly outlined in Section 5.1, and their performance is compared in Section 5.2. A
summary of our contributions and directions for future work are described in Section 6.

2 Radiochemical Dissolutions and Facility

Figure 1: MINOS testbed deployed at co-
location site of HFIR and REDC.

A multi-modal sensor testbed has been established
at ORNL under the Multi-Informatics for Nuclear
Operations Scenarios (MINOS) project, by the De-
partment of Energy’s (DOE) National Nuclear Se-
curity Administration (NNSA). Its purpose includes
the collection of sensor, parametric, and ground
truth data sets to support the development of data
analytics for nuclear nonproliferation scenarios.
The testbed is deployed at the conjoined site of the
85 MWth High Flux Isotope Reactor (HFIR) and
REDC shown in Figure 1.The testbed consists of a
variety of sensors that collect measurements of mul-
tiple modalities, including radiation, thermal im-
agery, seismic, infrasound, electromagnetic, and bi-
ological. For the specific task of inferring occurrences of events related to 238Pu campaign op-
erations at REDC addressed in this paper, the gamma spectra of radioactive volatile effluents are
measured at the REDC off-gas stack using a HPGe sensor system.

For the production of 238Pu using neutron irradiation, 237Np targets are prepared and utilized.
The targets are purified from feed stock material and converted to the desired chemical form,
and then fabricated into aluminum-clad rods at the REDC. Targets are then transferred to HFIR
(co-located with REDC), where they are loaded into HFIR target locations and irradiated. The
irradiated targets are transferred back to REDC for processing, where chemical separations are
conducted in hot cells and/or glove boxes to separate and purify the product material. Specifically,
238Pu is produced through neutron capture on targets of neptunium oxide in an aluminum matrix,
237NpO2/Al, clad in an Al alloy through irradiation in HFIR’s Beryllium reflector. The multistep
capture and decay processes are shown in Equation (1).

237Np+ 1
0n−−→ 238Np

β−−−→
2.1d

238Pu (1)

The irradiation of targets in the HFIR lead to a complex composition of radioactive isotopes
upon discharge. Because fission is induced, the composition continues to change during cool
down, transport, and processing in REDC due to radioactive decay.

3 Effluents and Measurements
Through the dissolution of irradiated material at REDC, fission products are released at different
times and potentially transported to the off-gas stack in various ways. The gamma spectra mea-
sured at the off-gas stack reflect the dynamic transport of the radioactive fission product isotopes.
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These spectra are measured using an ORTEC GEM series HPGe detector located at the REDC
off-gas stack line.The detector is shielded with lead bricks to reduce the gamma background.
Gamma-ray spectra are collected continuously and are processed using standard domain tech-
niques. Further details of this measurement and processing system are provided in [3]. Seventeen
individual gamma-ray peaks (corresponding to certain radionuclides) are targeted in the gamma-
ray energy spectral analysis. From this analysis, the associated count rate of those gamma-rays
are found. A peak fitting methodology, commonly applied in this domain space, is used on the
time aggregated gamma-ray spectra and the resulting background subtracted count rates are used
as input features for developing and testing classifiers and their fusers described in Section 5.

The target dissolutions give rise to a complex time series of source term S(t), t ∈ [0,T ], where
T represents the time where the source term has decayed to zero, or more practically, below the
minimum detectable threshold of the detector. The source term S(t) can be represented by a se-
ries of coupled equations for each isotope produced with the individual evaluation in the form of
Bateman Equation described in [1]. For each isotope, the source window [0,T ] is based on its half-
life and those of its parent nuclides. For fission reactions that occur during irradiation at HFIR,
the abundance of some nuclides reach a maximum, and some (progeny) isotope’s concentrations
continue to increase and reach a maximum after irradiation ceases. In addition, in the case of
spontaneous fission, radionuclides are continuously produced and even short-lived isotopes can be
present as long as there is sufficient activity of the isotope decaying by spontaneous fission (e.g.,
252Cf). The fission product isotopes are transported and measured in gas effluents at the off-gas
stack during [0,T +TM]. Thus, these measurements reflect a combination of operations involving
a series of processes and systems in addition to the physics of decay chain kinematics. Addition-
ally, the dissolution events affect the amount of material entering the off-gas system and result in
complex profiles of time series S(t). Examples of discrete events include mechanical penetration
of targets and sparging and mixing of dissolution tanks during and post primary dissolution, which
may result in varying source terms.

4 Classification Features
The gamma spectral measurements collected under MINOS project’s continuous data collection
campaign during May-June and Sept-Oct 2020 periods are considered here. They include two
238Pu campaigns (i.e., P5 and P6), and also “buffer” periods before and after the campaigns, as
shown in Figure 2 for 138Xe count rates.

4.1 Gamma-ray Spectral Features
Seventeen gamma-ray peaks (corresponding to certain radionuclides) are targeted in the gamma-
ray energy spectral analysis acquired by the HPGe system. These radionuclides were identified
from subject matter expert analysis of peaks present following 252Cf dissolution campaigns. Be-
cause of the spontaneous fission decay path, several short lived isotopes are present and easily
detected because of their high specific activity. The corresponding isotopes that correlate with
the gamma-ray peaks fit during the analysis are I-131, I-132, I-133, I-134 and I-135; five krypton
isotopes, Kr-85, Kr-87, Kr-88, Kr-89 and Kr-90; five xenon isotopes, Xe-135, Xe-135m, Xe-137,
Xe-138 and Xe-139; Ba-138; and Cs-139. Their count rates are found through analysis of the
integrated gamma spectrum every hour by peak fitting or by a regions of interest method [3].
The Xe-138 count rates shown in Figure 2 exhibit high variations both during and outside 238Pu
dissolution periods. It should be noted that the largest count rates (smallest uncertainty) are ac-
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Figure 2: Gamma spectra are collected by a HPGe sensor located on the REDC stack line (a)
Xe-138 count rates [cps], and (b) ratio of Xe-138 and Xe-139 count rates. Periods of ground truth
238Pu dissolution events at REDC are indicated by the red regions.

tually observed outside of the P6 campaign, an indication that other activity in REDC could be
responsible for these signals.

4.2 Isotope Ratios and Ratio-Ratio Regions
The cumulative distribution functions (cdf) of isotope count rates during the dissolution and non-
dissolution periods indicate certain separability, as shown in Figure 3(a) for a select Xe isotope and
one of its ratios. It is an indicator of their potential use as classifier features, although classifiers
may not explicitly exploit this separability concept. For the ratios of count rates, the corresponding
cdf plots, one of which is shown in Figure 3(b), also show a separability, which is a first indication
of their potential use as classifier features.
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Figure 3: Cumulative distribution function of count rates and ratios (a) Xe-135m and (b) Xe-
135m/Xe-135.
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Figure 4: Ratio-ratio regions for two pairs of isotope ratios.

The count rates for Xe-138 during two 238Pu campaigns, and the corresponding ratio of Xe-
138 and Xe-139 are shown in Figure 2. The pair-wise ratio plots, called ratio-ratio regions, are
shown for three cases in Figure 4. These regions for P5 and P6 overlap in the middle plot but not
as much in the other two plots. Also, the regions for non-dissolution periods overlap these regions
and also extend beyond them. These ratio-ratio regions are instructive in relating to the decision
regions of the classifiers, as will be shown in the next section.

Some of the subtle variation between the two campaigns can be explained by the ongoing
research and development of the dissolution process. The P5 campaign decayed the target for
roughly 90 days after irradiation before processing while the P6 campaign waited about 130 days
after irradiation before its material was processed. Additionally, the material processing workflow
was slightly altered. P5 featured an additional caustic dissolution following the cladding dissolu-
tions to ensure that aluminum within the pellet matrix was dissolved, but this step was removed
from the P6 workflow as it was discovered the cladding dissolutions were sufficient to dissolve
the aluminum within the individual pellets. Furthermore, P6 streamlined the process during the
actinide dissolution by maintaining the solution at a high temperatures for an extended period
instead of allowing it to cool every 24 hours, as shown in Figure 5.
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Figure 5: The temperature of the main dissolver tank during the two campaigns.
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5 Classification Methods and Performance
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classifier 
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Figure 6: Eight disparate classifiers are trained using
count rate or ratio estimates as features, and outputs
of top tree are combines using a classifier-fuser.

Eight disparate classifiers are tested us-
ing two types of input features (i) the
count rates of all gamma-ray peaks, and
(ii) six count rate ratios Xe-135m/Xe-
135, Xe-137/Xe-139, Xe-138/Xe-135,
Xe-138/Xe-137, Xe-138/Xe-139, and Kr-
88/Kr-89. These ratios are chosen to limit
the number of classifier features by an or-
der of magnitude below the total number
of all pairs. This choice is based on pre-
vious results obtained when classifier fea-
tures are limited to count rates of individ-
ual elements. It is intended to mitigate
systematic effects that might have been
introduced by mechanical or chemical means during the processing, filtration, and ventilation.
Xenon isotopes’ features achieved the lowest classification error followed by Kr isotopes’ features
but by a significant margin. The Iodine isotopes’ features resulted in much higher classification
error and hence not selected for ratio features; a detailed description of these results is provided
in [2]. The choice of five Xe ratios and one Kr ratio reflects the differences in their classification
errors. In both cases, the classifier-fuser ETF uses the classifiers’ outputs as its input features both
for training and testing.

5.1 Classifiers and Fusers
We use eight classifiers that represent diverse designs, and fuse the outputs of three classifiers as
in [2] (illustrated in Figure 5). The eight classifiers provided by the Matlab ML toolkit are:
• Classification Trees: CT method employs a decision tree based whose internal nodes repre-

sent binary decisions based on values of an input feature and the leaves correspond to clas-
sification labels [4]. The underlying classifier function is non-smooth with discrete jumps
corresponding to decision values of input features.
• Discriminant Analysis Classifier: DAC method is based on quadratic discriminant analysis

that minimizes the expected classification cost estimated using both means and covariances
of the classes [5]. It is based on a statistical approach and the underlying cost estimation
function is typically smooth.
• Error Correcting Output Codes: ECOC method is based on employing a collection of

binary SVMs under a coding design framework, and the underlying SVM functions are
smooth [6].
• Ensemble of Trees: EOT method is based on boosting of a collection of classification trees

that are customized to fit the training data using the AdaBoost method. It leads to highly
non-smooth classification function, and its function class consists of a large collections of
decision trees.
• Kernel Method: KM method employs a linear combination of Gaussian kernels as a clas-

sification function which is smooth.
• k Nearest Neighbors: Based on a structural property in feature space, kNN method utilizes

the proximity information to classify a feature vector. It leads to a non-smooth classification
function.
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• Naive Bayes: NB method is based on an implementation of Bayes principle, and it uses the
training sample to estimate the underlying probabilities needed for implementing an optimal
Bayes fuser.
• Support Vector Machine: SVM method is based on non-linearly transforming the feature

space, X , so that it gets “suitably separated” into classes in the transformed space. It leads to
a smooth classification function which is compared to a threshold. Its function class consists
of smooth functions as a result of radial basis function kernels used in our implementation.

There eight classifiers represent different types of methods: CT and ET are tree-based with non-
smooth classification functions; kNN is based on the nearness concept in the feature space; KM,
SVM and ECOC utilize smooth underlying functions; and DAC and NB are based on statistical
methods.

5.2 Classification Performance
The performance of a classifier is quantified by its 5-fold training classification error, which is
a weighted average of missed detection and false detection errors by the fraction of positive and
negative examples. The classification errors of the classifiers and classifier-fuser are shown in
Table 1 for the two cases using count rates and ratios as features.

CT DAC ECOC EOT KM KNN NB SVM ETF
counts 0.0085 0.0854 0.2440 0.0031 0.2380 0.0010 0.1227 0.2426 0.0003
ratios 0.0177 0.2493 0.2564 0.0063 0.1096 0.0390 0.2522 0.2561 0.0000

Table 1: 5-fold cross-validation error of eight classifiers and the classifier-fuser for the two cases
using count rate and ratio features.

Among the eight classifiers, CT, EOT and kNN achieve the lowest overall errors in both cases,
and hence are chosen to be fused. The best individual classifier using count rate feature is kNN
with 0.1% error, whereas that for ratio features is EOT with 0.63% error. In both cases, the fuser
ETF achieved lower error than the best classifier, given by 0.03% and 0.0% error using counts
and ratios features, respectively. These errors, however, must be interpreted within the context of
1758 and 1061 positive and negative examples, respectively. We account for them by explicitly
considering the number of missed detections out of 1758 positive examples and the number of
false detections (alarms) out of 1061 negative examples. The comparative performance of these
classifiers is summarized as follows:
• The same three classifiers, namely CT, EOT and kNN, achieved the lowest errors in both

cases, but different ones achieved the lowest error in individual cases. They are all non-
smooth methods, and CT and EOT are tree-based and kNN is structure-based (that is, near-
ness in feature space). The smooth and statistical methods did not achieve comparably low
error in either case.
• Best classifiers are different in the two cases, although both are non-smooth. For the count

rate features, kNN missed detecting 1 out of 1758 positive examples and has 2 false alarms
out of 1061 negative examples, whereas kNN with ratio features made more errors, namely,
missed 58 detections and has 52 false alarms. Thus, “neareness” in the count rate space did
not carry over to the ratio space, thereby resulting in different errors of kNN method. EOT
using count ratio features missed 10 detections and has 8 false alarms, and using count rate
features, it missed 4 detections and has 5 false alarms. The tree structure of the decision
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surfaces used by EOT seems to be effective for classification in both cases, resulting in the
error difference of 0.32%.
• The impact of classifier fusion is more pronounced for ratio features, as the error is reduced

from 0.63% to 0.0% (EOT to ETF), which is a result of the elimation of 4 missed detection
and 5 false alarms. The reduction is relatively less pronounced for count rate features,
namely from 0.10% to 0.03% (kNN to ETF), which is a result of the reduction of missed
detections from 1 to 0 and false alarms from 2 to 1. It is interesting to note that the classifier
fusion is more effective in reducing the classification error when ratio features are used.
• The difference in ETF errors is very small for the two cases, and is a result of 1 false alarm

out of 1061 negative examples in the former case and none in the latter. However, this
difference is too small to infer their relative superiority.

In addition to the classification errors, the decision regions of the classifiers provide some
insights into their sensitivity to ratio-ratio regions. For kNN based on count rate features with the
lowest error, the decision region closely matches the ratio-ratio region as shown in Figure 7(a).
For the ratio features, kNN’s decision region extends beyond the ratio-ratio region, resulting in a
larger (albeit still low) error, as shown in Figure 7(b).
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Figure 7: Ratio-ratio regions of training data and kNN classifier.

Overall, the classification performance is comparable in both cases based on the data from two
238Pu campaigns. While these results indicate that the isotope ratios are viable and possibly more
justifiable classifier features compare to isotope count rates, these errors must be interpreted with
in the context of “small” data set .

6 Conclusions
This paper is a part of continuing efforts towards developing data analytics for inferring the oc-
currences of dissolutions at the REDC using gamma-ray measurements of the gaseous effluents
at the off-gas stack. In previous works, HPGe gamma spectra of the effluents have been used to
estimate count rates in spectral regions of radionuclides, which are then used as features to train
classifiers [1, 2]. In this paper, we explored the use of the isotope ratios as classifier features since
they are considered less sensitive to count rates that could vary within and across the dissolution
campaigns. Eight disparate classifiers and their fuser are trained using data from two 238Pu dis-
solution campaigns to classify dissolution events using the gamma spectra measurements. Two
types of classifier feature are utilized, namely, seventeen isotope count rate estimates and six of
their ratios. The training classification accuracy results of classifiers are presented, and the en-
semble of trees fuser achieved the overall high accuracy in both cases. Overall, the classification
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performance is comparable in both cases based on the (limited) data from two 238Pu campaigns
at REDC, which indicates that the isotope ratios are viable and possibly more justifiable classifier
features compared to isotope count rates.

Several future directions remain to be pursued, including, expanding the study to more cam-
paigns of 238Pu and other isotopes, such as 252Cf, and the performance study of classifiers that
are trained with limited data from some campaigns and tested with that from several other cam-
paigns. More generally, it would be of future interest to identify invariants (such as isotopic ratio
regions) that are considered stable across multiple dissolutions and also the re-work activities in
between them. Another future direction is the physics-based explanations for the classifier perfor-
mance complemented by the incorporation of details of the radiochemical processes and effluents
transport mechanisms of the facility including the abatement and filtering systems.
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