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Abstract 
The IAEA employs statistical methods to calculate the probability of detecting diversion from each 

nuclear material stratum in a facility. These detection probabilities (DPs) are used for both 

inspection planning and effectiveness evaluation. The DPs can be calculated using a deterministic 

or a stochastic approach. This paper describes the benchmark calculation performed using the 

stochastic model for spent fuel physical inventory verification (PIV). The IAEA performs PIV 

inspections for spent fuel pools using several different nondestructive measurement techniques. 

Each instrument has a varying precision and measurement time. The inspection plan, i.e., the total 

number and type of measurements, is designed to achieve a desired probability of detection (DP) by 

considering the strengths and efficiency of each measurement type. For example, a goal amount of 

one significant quantity (SQ) can be achieved for spent fuel inspection plan by taking many pins 

from few assemblies or by taking few pins from many assemblies. Varying the number of pins 

taken from each assembly impacts the achieved DPs. The sampling plan must take these variations 

into account when determining the number and type of measurements. When the material taken 

from each tampered assembly is equal, the deterministic solution is a hypergeometric distribution 

function, but when different numbers of pins are taken from various assemblies the solution is a 

multivariate hypergeometric function. The stochastic approach simply simulates an inspection given 

the parameters of the diversion and measurements and averages over many trials. The paper will 

present the results from the stochastic and deterministic approach. The stochastic model results 

further showed that the order in which you take measurements (high precision to low precision, etc.) 

does not impact the achieved DPs in the sampling plan. 

Introduction 
Most commercial nuclear power plants are classified as light water reactors (LWRs). Once the fuel 

of an LWR is spent, it is placed in a spent fuel pool as a spent fuel assembly (SFA) where it stays 

until enough of the fission product radioisotopes decay to the point where the SFA can be 

transported to long term storage. These SFAs contain plutonium that if reprocessed can be used to 

make a nuclear weapon. Due to the possibility of using these SFAs to make a weapon, the IAEA 

and other organizations that perform safeguards inspect these spent fuel pools to ensure that the 

SFAs have not been tampered with or removed. 
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Inspections are performed regularly in non-weapon states that have signed the NPT. The operators 

of the nuclear facility being inspected must provide the inspectors with the inventory of nuclear 

material on site so that the inspectors can plan to verify the declared inventory by measuring the 

material. Several different devices are used to measure nuclear material, but all are classified into 

three types of measurements. Devices that can verify that there is nuclear material in the item being 

measured can identify if there has been a gross defect of the item, meaning that all or nearly all the 

nuclear material was taken, and are called gross measurement devices. Devices that can identify if 

part or parts of the nuclear material in an item is missing are called partial measurement devices. 

When a device can identify a small defect of material from an item (a bias defect) it is called a bias 

measurement device. Inspectors plan to make a number of each type of measurement when 

inspecting a facility to ensure a desired probability of detecting a material diversion is achieved. An 

ongoing project at UMass Lowell has been to determine achieved detection probability based on 

measurements, declared inventory, and possible diversion scenarios for post-inspection analysis. 

Overview of Krieger et al.[1] 

Krieger et al. explores several scenarios and problems similar to those that have been explored and 

will be explored in the project at UMass Lowell. The paper explores non-equal diversion, which the 

UMass Lowell project has already explored to an extent, and it uses a step function for its 

identification probability for item verification which is a different approach than what the UMass 

Lowell project has used. 

The IAEA has historically made the assumption of equal diversion, meaning that the diverter has 

taken an equal amount of material from each diverted item. This assumption is used to keep the 

math involved in the problem simple and the justification is that there will not be a drastic 

difference in detection probability should the diverter decide to take different amounts of material 

from diverted items. An investigation to challenge this assumption was performed in [1] using a 

deterministic approach. For equal diversion, the probability that a diverted item will be selected can 

be represented by the hypergeometric distribution function, but for non-equal diversion there are 

more than two choices for item selection, so the selection probability is instead a multivariate 

hypergeometric function. Deriving the correct formula for the selection probability can be 

challenging but it is even more so challenging to incorporate the probability that the defected item 

will be identified after it is selected. A convenient solution to the latter challenge is to use a step 

function for identification probability. 

The probability that a device will identify an item as defective can be modeled in several ways. If it 

is to be assumed that the measurements made by the device follow a normal distribution, then that 

cumulative distribution function can be used to model the identification probability of the device. 

Another approach is to specify a certain percent of material defected where the device will identify 

a diversion with the behavior of a step function in which after a certain percentage of the material is 

diverted, the device always identifies the diversion. In reality the ability for the inspector to identify 

a diversion with a device can depend on the judgement of the inspector and can follow a logistic 

shape.  
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The specific devices examined in the paper are the PGET, DCVD, and ICVD. These measurements 

are of the type bias, partial, and gross respectively. The step function cutoffs for each device are 

based on the percentage of remaining material in the SFA. The PGET can identify a single pin 

diversion when 0.38% of the pins or more of the material in the item (an SFA) is missing. The 

DCVD can identify a diversion when about 30% of the pins or more have been removed while the 

ICVD can only identify when there are no pins remaining in the SFA. 

Both equal and non-equal diversion scenarios are considered in [1]. For the equal diversion 

scenario, the assemblies that are diverted from have the same number of pins taken from them 

(equal diversion assumption). Due to the difference in the identification cutoffs (0.38%, 30% and 

100%), three regions of numbers 𝑟𝑝𝑖𝑛 of removed pins must be considered: 𝑟𝑚𝑖𝑛 ≤ 𝑟𝑝𝑖𝑛 ≤ ⌈0.3 𝐿⌉ −

1, ⌈0.3 𝐿⌉ ≤ 𝑟𝑝𝑖𝑛 ≤ 𝐿 − 1, and 𝑟𝑝𝑖𝑛 = 𝐿, where 𝑟𝑚𝑖𝑛 = ⌈𝑆𝑄 × 𝐿 (𝑁�̅�𝑃𝑢)⁄ ⌉ and 𝑁 is the number of 

SFAs in the spent fuel pool, 𝐿 is the number of fuel pins per SFA, �̅�𝑃𝑢 is the average amount of 

plutonium (Pu) per SFA, and 𝑆𝑄 is the significant quantity (𝑆𝑄=8 [kg] for Pu). Because the DP is a 

monotone decreasing function in all three regions, the minimum of the DP curve is attained at 

𝑟𝑝𝑖𝑛 ∈ {⌈0.3 𝐿⌉ − 1, 𝐿 − 1, 𝐿}. Thus, a sampling plan achieves a required DP 1 − 𝛽𝑟𝑒𝑞 if and only if 

the DP at the three values 𝑟𝑝𝑖𝑛 ∈ {⌈0.3 𝐿⌉ − 1, 𝐿 − 1, 𝐿} is at least 1 − 𝛽𝑟𝑒𝑞.  

In the non-equal diversion scenario, there are several pins taken from one set of SFAs and a 

different number of pins taken from another set. This example in [1] was chosen such that one set 

can be identified by both the PGET and DCVD while the other can only be identified by the PGET. 

Because of how specific this scenario is there is only one detection probability evaluated. The order 

of measurements, i.e., PGET > DCVD > ICVD or DCVD > PGET > ICVD, is suggested to have an 

impact on the final detection probability, although this is not the case. 

Equal Diversion Scenario with Step Function 
In the equal diversion scenario, a hypothetical BWR spent fuel pond with 2500 SFAs is considered. 

Each SFA contains 96 fuel pins and an average amount of 2kg of plutonium. The sampling plan, 25 

PGET, 65 DCVD, and 10 ICVD, that is chosen achieves the detection probability 0.1315. Several 

detection probabilities are then calculated by varying the number of pins taken from diverted 

assemblies. 

The number of assemblies diverted from is dependent on the number of pins taken from each 

diverted assembly. About 384 pins, four assembly’s worth, would have to be taken from the pool to 

reach a significant quantity of plutonium. These pins can be diverted by taking every pin in just four 

assemblies, taking one pin each from 384 assemblies, or any combination of pins taken from 

assemblies that adds to the goal amount. In general, when more pins are taken from each diverted 

assembly, there is less of a chance that a diverted assembly will be chosen but a higher chance that 

the diverted assembly will be identified as tampered should it be chosen. Conversely, if less pins are 

taken from each diverted assembly, then there will be a higher chance that a diverted assembly is 

chosen for inspection but a lower chance that it is identified as defective. It is important to note that 

although the extreme cases (taking 384 pins from four assemblies or from each of 384 assemblies) 

can sometimes represent a lowest or highest detection probability case, this is not a general rule. 
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Using deterministic methods, the hypergeometric distribution function is used for the selection 

probability of the assemblies. Because a step function is used for the identification probability, the 

detection probability is simply the probability that an SFA is not selected by a measurement device 

that can identify the SFA as tampered. For example, if the number of pins removed from each 

diverted assembly is 20 pins, then the detection probability simplifies to the probability that a 

tampered assembly is chosen to be measured by the PGET device, because neither the DCVD nor 

ICVD could identify an assembly as tampered with when only 20 pins are removed. The results 

from the scenario discussed are presented in [1] in Figure 1. 

 

Figure 1 - Achieved detection probability for various numbers of pins diverted with deterministic 

method. 

In the stochastic case, the selection probability is determined by running many simulations of the 

inspection. The pool is defined for each scenario of unique number of pins removed from each 

diverted assembly and assemblies are randomly selected from the pool. Each measurement type is 

performed in sequence (PGET to DCVD to ICVD). If a diverted assembly is selected and the 

measurement device would identify it as tampered, then the detection for that trial of the simulation 

is one. When all measurements are performed and none of the diverted assemblies have been 

detected then the detection for that trial is zero. After running thousands of trials (10000 trials were 

enough for this problem), the trial detection results are averaged to find the probability of detection. 

Running more trials causes the average detection probability to be more precise. Further reading on 

stochastic methods can be found in [2]. The same sampling plan and diversion scenario used in the 

deterministic solution was simulated and produced the results seen in Figure 2. 
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Figure 2 - Achieved detection probability for various numbers of pins diverted with stochastic 

method. 

Both methods produce the same result, however the stochastic result has a small uncertainty 

associated with it. In both cases the minimum detection probability occurs when 28 pins are taken 

from 14 assemblies as this is the highest number of pins that can be taken from few assemblies 

before the DCVD instrument can start to identify diversions. 

Non-equal Diversion and Significance of Measurement Order 
In a hypothetical spent fuel pool with 2000 SFAs, 4 pins are removed from 21 SFAs and 30 pins 

from 10 SFAs to reach a goal amount of 8kg of plutonium. This is an unequal diversion scenario. 

Because there are no gross defects in this scenario, the ICVD measurements are not impactful on 

the achieved detection probability. Under the equal diversion assumption, the sampling plan 97 

PGET, 162 DCVD, and 59 ICVD measurements achieves a desired detection probability of 0.5.  

This kind of diversion scenario is not considered by the current model of the IAEA which assumes 

equal diversion. In this scenario the diverter attempts to minimize the probability that a PGET will 

select a defective SFA by minimizing the total number of diverted SFAs. At the same time the 

diverter attempts to minimize the selection probability from the DCVD by minimizing the number 

of diverted SFAs with more than 30% of the pins missing. The strategy is a compromise of the two 

strategies. 

As seen in [1], the mathematical complexity of the selection probability increases for non-equal 

diversion due to the number of types of items that can be selected exceeding two. The multivariate 

hypergeometric function can be used to determine the selection probability of the diverted items. 

Using a step function to evaluate the probability of identifying a diverted item means that if the 

diverted item is chosen and it has had enough material diverted to be identified by the instrument 

then it will be detected, so the identification probability is simplified. Even with this simplification 

the deterministic approach is still difficult, but a stochastic simulation is rather easy to develop. 

The stochastic approach was used to calculate the DP of the diversion scenario with both a step 

function and with a normal distribution. The step function found the DP of the scenario to be ~91% 
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while the normal distribution had a slightly higher answer of ~92%. The relative standard deviation 

used for the PGET was 0.1%, for the DCVD was 3%, and for the ICVD was 15% (which is a 

common approximation). The slightly higher DP is likely due to the possibility for ICVD to catch a 

diversion with a 15% relative standard deviation. 

In [1], an argument was made that changing the order of the measurements may affect the achieved 

detection probability and that taking less precise measurements first would lower the achieved 

detection probability. Upon running stochastic simulations of both orders of measurement, the same 

detection probability of 91% was calculated which agrees with the first deterministic result but not 

the second. 

We first assume that sampling is performed in the order 𝑛3 → 𝑛2 → 𝑛1, i.e., we sample first the 

SFAs verified by the PGET, then – from the remaining 𝑁 − 𝑛3 SFAs – the SFAs verified by the 

DCVD, and finally – from the remaining 𝑁 − 𝑛3 − 𝑛2 SFAs – the SFAs verified by the ICVD. 

Then non-detection event occurs if for the PGET measurements none of the 21 + 10 = 31 SFAs 

are in the sample, and for the subsequent DCVD measurements none of the 10 SFAs with 30 

missing pins are in the sample. Thus, the DP is, with 𝑁 = 2000, 𝑛3 = 97 and 𝑛2 = 162, 

1 −
(

31
0

) (
𝑁 − 31

𝑛3
)

(
𝑁
𝑛3

)

(
10
0

) (
𝑁 − 𝑛3 − 10

𝑛2
)

(
𝑁 − 𝑛3

𝑛2
)

≈ 0.91 . (1) 

The term for the selection probability for the PGET is the first fraction while the selection 

probability for the DCVD is the second fraction. The ICVD can only identify fully emptied items as 

falsified, so it is not considered for this diversion scenario. 

Now, consider the case the sampling is done in the order 𝑛2 → 𝑛3 → 𝑛1. Then, the non-detection 

event occurs if for the DCVD measurements none of the 10 SFAs with 30 missing pins but 𝑖 SFAs 

out of the 21 SFAs with 4 missing pins (which can only be identified with PGET) are sampled, and 

for the subsequent PGET measurements none of 21 − 𝑖 remaining SFAs with 4 missing pins and 

none of the 10 SFAs with 30 missing pins, are sampled. Using the multivariate hypergeometric 

distribution [3], we get, with 𝑁 = 2000, 𝑛3 = 97 and 𝑛2 = 162, for the DP 

1 − ∑
(

21
𝑖

) (
10
0

) (
𝑁 − 31
𝑛2 − 𝑖

)

(
𝑁
𝑛2

)

21

𝑖=0

 
(

31 − 𝑖
0

) (
𝑁 − 𝑛2 − (31 − 𝑖)

𝑛3
)

(
𝑁 − 𝑛2

𝑛3
)

≈ 0.91 .  (2) 

The above-mentioned discrepancy in [1] is because the number of falsified SFAs that can be 

identified with the PGET measurements in the second step is not just 21 − 𝑖 (as claimed in [1]) but 

21 − 𝑖 + 10. This is now corrected in Eq. (2). Thus, Eqs. (1) and (2) illustrate that the DP does not 

depend on the order of sampling. Note that the complexity of the DP calculation in Eq. (2) greatly 

increases due to the fact the PGET can identify both types of diverted items as defective while the 

DCVD can only identify the 10 SFAs with 30 missing pins as falsified. 
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That the order of sampling does not play any role has been shown above for the specific scenario. 

But is this true in general, i.e., for any 𝑁, 𝑛3, 𝑛2 and the type of scenario considered? The answer is 

yes. To prove this statement let 𝑟3 resp. 𝑟2 be the number of SFAs from which 𝑟3,𝑝𝑖𝑛 resp. 𝑟2,𝑝𝑖𝑛 are 

assumed to be removed. Because 𝐿 = 96, �̅�𝑃𝑢 = 2 [kg], and 𝑆𝑄 = 8 [kg] we must have  

2 [𝑘𝑔]

96
× (𝑟3,𝑝𝑖𝑛 × 𝑟3 + 𝑟2,𝑝𝑖𝑛 × 𝑟2) = 8 [𝑘𝑔]. (3) 

We further assume that 1 ≤ 𝑟3,𝑝𝑖𝑛 ≤ 28 and 29 ≤ 𝑟2,𝑝𝑖𝑛 ≤ 95 which models the situation that the 

PGET can identify the 𝑟3 + 𝑟2 SFAs as falsified, while the DCVD can only identify the 𝑟2 SFAs as 

falsified. Examples are given Table 1. 

 

 

Table 1: Examples of 𝑟3, 𝑟3,𝑝𝑖𝑛, 𝑟2 and 𝑟2,𝑝𝑖𝑛 that fulfill Eq. (3). The second line presents the 

example used in [1] and in the calculations in Eqs. (1) and (2). 

If the sampling is done in the order 𝑛3 → 𝑛2 → 𝑛1, then the DP, abbreviated by 𝐷𝑃321, is, see the 

derivation of Eq. (1), given by 

𝐷𝑃321 = 1 −
(

𝑟3 + 𝑟2

0
) (

𝑁 − (𝑟3 + 𝑟2)
𝑛3

)

(
𝑁
𝑛3

)

(
𝑟2

0
) (

𝑁 − 𝑛3 − 𝑟2

𝑛2
)

(
𝑁 − 𝑛3

𝑛2
)

 , (4) 

while in the case the sampling is done in the order 𝑛2 → 𝑛3 → 𝑛1, the DP, abbreviate by 𝐷𝑃231, is, 

see the derivation of Eq. (2), given by 

𝐷𝑃231 = 1 −

∑
(

𝑟3

𝑖
) (

𝑟2

0
) (

𝑁 − (𝑟3 + 𝑟2)
𝑛2 − 𝑖

)

(
𝑁
𝑛2

)

𝑀𝑖𝑛(𝑟3,𝑛2)

𝑖=𝑀𝑎𝑥(0,𝑛3+𝑛2−(𝑁−(𝑟3+𝑟2)))

 
(

𝑟3 + 𝑟2 − 𝑖
0

) (
𝑁 − 𝑛2 − (𝑟3 + 𝑟2 − 𝑖)

𝑛3
)

(
𝑁 − 𝑛2

𝑛3
)

= 1 − ∑
(

𝑟3

𝑖
) (

𝑁 − (𝑟3 + 𝑟2)
𝑛2 − 𝑖

)

(
𝑁
𝑛2

)

𝑀𝑖𝑛(𝑟3,𝑛2)

𝑖=𝑀𝑎𝑥(0,𝑛3+𝑛2−(𝑁−(𝑟3+𝑟2)))

 
(

𝑁 − 𝑛2 − (𝑟3 + 𝑟2 − 𝑖)
𝑛3

)

(
𝑁 − 𝑛2

𝑛3
)

 .

 (5) 

𝑟3 𝑟3,𝑝𝑖𝑛 𝑟2 𝑟2,𝑝𝑖𝑛 

21 4 10 30 

18 8 4 60 

34 10 1 44 

12 12 6 40 

21 14 3 30 
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We now prove that 𝐷𝑃321 = 𝐷𝑃231, i.e., the order in which the items are measured resp. sampled 

does not affect the DP. Using the identity 

 ∑ (
𝑎
𝑖

) (
𝑏

𝑚 − 𝑖
)

𝑀𝑖𝑛 (𝑚,𝑎)

𝑖=𝑀𝑎𝑥(0,𝑚−𝑏)

= (
𝑎 + 𝑏

𝑚
) 

for any positive integers 𝑎, 𝑏 and 𝑚, see [2], and the fact that 

 (
𝑁 − (𝑟3 + 𝑟2)

𝑛2 − 𝑖
) (

𝑁 − 𝑛2 − (𝑟3 + 𝑟2 − 𝑖)
𝑛3

) = (
𝑁 − 𝑛3 − (𝑟3 + 𝑟2)

𝑛2 − 𝑖
) (

𝑁 − (𝑟3 + 𝑟2)
𝑛3

) , 

we obtain by identifying 𝑎 → 𝑟3, 𝑏 → 𝑁 − 𝑛3 − (𝑟3 + 𝑟2) and 𝑚 → 𝑛2, 

 ∑ (
𝑟3

𝑖
) (

𝑁 − (𝑟3 + 𝑟2)
𝑛2 − 𝑖

)

𝑀𝑖𝑛(𝑟3,𝑛2)

𝑖=𝑀𝑎𝑥(0,𝑛3+𝑛2−(𝑁−(𝑟3+𝑟2)))

 (
𝑁 − 𝑛2 − (𝑟3 + 𝑟2 − 𝑖)

𝑛3
)

= (
𝑁 − (𝑟3 + 𝑟2)

𝑛3
) ∑ (

𝑟3

𝑖
) (

𝑁 − 𝑛3 − (𝑟3 + 𝑟2)
𝑛2 − 𝑖

)

𝑀𝑖𝑛(𝑟3,𝑛2)

𝑖=𝑀𝑎𝑥(0,𝑛3+𝑛2−(𝑁−(𝑟3+𝑟2)))

 

= (
𝑁 − (𝑟3 + 𝑟2)

𝑛3
) (

𝑁 − 𝑛3 − 𝑟2

𝑛2
) ,

 

i.e., by Eq. (5) 

𝐷𝑃231 = 1 −
(

𝑁 − 𝑛3 − 𝑟2

𝑛2
)

(
𝑁
𝑛2

)

(
𝑁 − (𝑟3 + 𝑟2)

𝑛3
)

(
𝑁 − 𝑛2

𝑛3
)

 . (6) 

Because 

(
𝑁
𝑛2

) (
𝑁 − 𝑛2

𝑛3
) =

𝑁!

𝑛3! (𝑁 − 𝑛3)!

(𝑁 − 𝑛3)!

𝑛2! (𝑁 − 𝑛2 − 𝑛3)!
= (

𝑁
𝑛3

) (
𝑁 − 𝑛3

𝑛2
) , 

Eqs. (6) and (4) yield 

𝐷𝑃231 = 1 −
(

𝑁 − 𝑛3 − 𝑟2

𝑛2
)

(
𝑁 − 𝑛3

𝑛2
)

(
𝑁 − (𝑟3 + 𝑟2)

𝑛3
)

(
𝑁
𝑛3

)
= 𝐷𝑃321, 

which had to be shown. 

Advantages/Disadvantages to Stochastic Method 
There are many ways in which a stochastic approach to these diversion scenarios and evaluations of 

achieved detection probability can offer advantages over the tradition deterministic approach.  

The most important advantage of utilizing a stochastic approach is that it is an alternative method 

that can capture discrepancies between models and highlight oversights or mathematical errors. 
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When both methods agree, there is more certainty that both have arrived at the correct answer 

instead of the less likely possibility that both methods have arrived at the same, incorrect answer. 

When the answers are different then it is clear that at least one is incorrect. The time to develop a 

stochastic approach is worth the increased certainty it provides. 

Due to the intuitive nature of running simulations of an event, the stochastic approach is more 

straightforward. When tackling a new problem or scenario, the stochastic approach can take less 

time to develop because a mathematical derivation of the formula is not needed. A quick solution or 

estimation can be reached with the stochastic approach, before delving deep with a deterministic 

solution. 

The selection probability in the stochastic approach is simple enough that using different kinds of 

approaches to identification probability is easily achieved. In the past the measurement devices used 

by the IAEA are assumed to have uncertainties based around the normal distribution. This has been 

criticized, and both step functions and logistic functions are suggested as alternatives. In a 

stochastic simulation of an inspection, any desired cumulative distribution function can be used as 

the identification probability. As long as there exists an equation or fine enough discrete values for 

identification probability the simulation can be performed. The most realistic option is the logistic 

function, as instruments have been shown to follow this trend in actual experiments with MTR 

assemblies at the UMass Lowell Research Reactor with an HM-5 and similarly with assemblies 

from the Medical Research Reactor at BNL. 

In some cases, a stochastic approach can be faster at arriving at the solution. When the problem is 

complex enough, the deterministic solution requires more computational power than the stochastic 

solution. For example, when the deterministic solution utilizes a tree diagram to determine selection 

probability, large numbers of measurements or types of diverted items/batches will cause the 

deterministic calculation to take quite some time as the total number of possibilities increases 

dramatically. In most simple cases the deterministic solution is faster as many trials must be 

performed to get a precise solution with the stochastic method. 

When extreme precision is required and a low uncertainty is desired, the stochastic method can take 

some time to get to the required solution. A larger number of trials is required for lower 

uncertainties, and more trials means that that the simulation takes longer. 

Additionally, it is possible to develop a simulation that is not correct. In other words, the simulation 

performed in the code developed for the problem is not representative of the scenario. The approach 

is simple and not as rigorous, so it is important to make sure that the simulation is performing the 

scenario presented. Just as deterministic solutions can be accompanied with a proof, stochastic 

simulations must be evaluated to ensure that the approach does indeed solve the original problem.  

Conclusions 
Stochastic simulations like the one used to verify the example from [1] are useful for a variety of 

reasons including the ability to provide another method to arrive at the same answer. Stochastic 

simulations are often less complex than deterministic solutions and this proves true for the problem 

presented in the paper. A simple trial simulation and average is not at all complex when compared 
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to the multivariate hypergeometric distribution function. For this reason, stochastic solutions can 

serve as a check for deterministic solutions before a proof can be developed and to verify that both 

solutions are correct. Whenever there is doubt that the deterministic solution is correct, an easy way 

to verify that it is correct is to run a stochastic simulation. The impact that the order of 

measurements had on the detection probability in the spent fuel scenario was found to be none at all 

by the stochastic approach and this confirmed the suspected mistake in the deterministic equation 

that was developed. 

Recommendations and Future Work 
There are countless areas for investigation regarding non-equal diversion strategies and the effect on 

DP. Changing the number of types of items in the scenario – partially diverted, bias diverted, fully 

diverted, and non-diverted items – offers the ability to cover a wide range of detection probabilities 

based on how many items are in each diverted group and how much material is diverted from each 

item in a group. Increasing the number of item groups increases the complexity of the deterministic 

solution to the selection probability with the multivariate hypergeometric distribution function. 

Exploring these scenarios with the stochastic method may be quickest and easiest, and any 

interesting scenarios can be confirmed with a deterministic approach. 

The stochastic approach allows for the introduction of a more complex identification probability 

than the step function. The normal distribution was used to demonstrate this trait. Another 

alternative for identification probability is a logistic function. 

Developing a way to examine many non-equal diversion scenarios systematically will help future 

explorations into non-equal diversion looking for specific diversion scenarios that may point out 

ways in which IAEA inspection plans can improve. In the equal diversion scenario, the independent 

variable is the number of defected items / batches, and a plot is generated with the DP as the 

dependent variable. In this way, a range of possible diversion scenarios is presented on one graph 

and the worst cases can be spotted by looking at the minimum DP values on the graph. The 

variables in non-equal diversion cannot be presented in the same way as with equal diversion. In 

equal diversion and a fixed goal amount of one SQ, the amount of material taken from each item 

diverted decreases as the number of diverted items increases, but with several diverted groups of 

different diversion amounts in non-equal diversion, the incremental change from one scenario to 

another is not as clear. A method to sweep through different diversion scenarios much be developed 

for non-equal diversion to be thoroughly investigated. 
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