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ABSTRACT  
Statistical models are used to calculate probability of detection of diverted material for individual 
nuclear material strata to assess the effectiveness of IAEA verification inspections. The safeguards 
verifications use stratified inventories or materials flows, whereby the material is grouped into strata 
on the basis of similar physical and chemical characteristics. The detection probabilities (DPs) can be 
aggregated across material strata to determine the probability of detecting material diversion at the 
facility level. To aggregate DP to the facility level, one must account for all realistic ways in which a 
total amount of diverted material may be split among different strata. A brute-force enumeration to 
calculate aggregate detection probability (ADP), referred to as Partitions method, considers all 
possible combinations of splitting the goal amount among the existing strata. The algorithm then finds 
the combination that meets a specified criterion, such as minimum ADP in a facility across all strata. 
The Partitions method finds the global minimum of the ADP because it explicitly considers all 
different combinations. However, when considering a large facility with several strata the algorithm 
comes with a high computational cost. The computational time is observed to increase exponentially 
with increasing number of strata. Another approach to compute ADP uses Pareto frontiers, 
inductively updating the frontier by evaluating combinations with one additional stratum at each 
inductive step. The process iterates until the final stratum is included to calculate the final ADP result. 
We have studied one other method, which we refer to as a modified Greedy Algorithm. The paper 
will discuss simulation results for these aggregation algorithms in application to representative mock 
inspection data and facilities. The proof statements and results presented in this paper complement 
the work described concurrently in the INMM/ESARDA conference paper by Bevill et al. (2021).  

INTRODUCTION  
In IAEA nuclear safeguards and inspections, a state is a collection of facilities, a facility is a collection 
of strata and a stratum is a collection of items and batches. Diversion strategies at stratum level 
involve different ways of acquiring the goal material from the items or batches and detection strategies 
involve different selection and identification procedures the inspectors perform to identify the 
“defected” items (i.e., items with an amount of material removed or added as part of a diversion 
strategy). The Defect detection probability (DP) is considered as the effectiveness metric in 
quantifying the effectiveness of various detection strategies on the stratum which was put through 
specific limiting case diversion strategies [1]. Detection of at least one defect requires selection of the 
defected items from collection of items followed by identification of at least one defected items as 
defective using a measurement instrument. Hence DP constitutes Defect selection probability (SP) 
and Defect identification probability (IP). At facility or state level, the diversion strategies involve 



different ways of splitting the total goal diversion amount into total number of strata and acquiring 
the stratum specific goal amounts using the stratum specific diversion strategies which when 
inspected will result in stratum specific DPs for each stratum which will be aggregated to yield a 
facility level detection probability (ADP) metric using event independence principle. Among all 
possible ways or combinations of splitting the total goal amount among existing strata there exists at 
least one combination which poses maximum proliferation risk yielding (global) minimum aggregate 
detection probability (Min ADP). Thus, Min ADP is used as limiting case metric to evaluate the 
combined and overall effectiveness of stratum specific detection strategies at facility or state levels 
and this paper discusses different techniques and algorithms employed in computation of Min ADP 
for a discretized problem. Determining the combination of goal amounts that yield minimum of all 
possible Aggregate Detection Probabilities is considered as an Optimization problem. The stratum 
level DP curves here, used in estimation of ADPs, are discrete in nature and cannot be represented by 
any differentiable equation. Therefore, the problem is further sub-classified as combinatorial non-
differentiable optimization problem and techniques from heuristics, meta-heuristics and dynamic 
programming are considered for ADP optimization. From Dynamic Programming point of view the 
present problem is classified as a one-dimensional allocation problem as material diverted is the only 
property that requires optimization. That is, all independent variables G1, G2, …, Gn of the ADP 
function defined later in this paper correspond to material diverted from different strata, and ‘material 
diverted or goal amount’ is in essence represents a single property. 
OVERVIEW OF MOCK FACILITY INFO  

Table 1. Mock Enrichment Facility - Stratum Inventory - No. of Items & their respective material 
compositions in significant quantities (SQ) 

Stratum 
ID Description Items PU 

(SQ) 
HEU 
(SQ) 

LEU 
(SQ) 

NU 
(SQ) DU (SQ) TH 

(SQ) 

UFE EU 30B PROD CYL IN STORE 26   17.930    

UFN NU 48Y FEED CYL IN STORE 35    28.967   

UFN-H NU HEELS CYL IN STORE 40    0.009   

UFD DU 48Y TAILS CYL IN STORE 300     121.988  

SM1-E EU SAMPLES AND SLUDGES 163   0.015    

SM1-N NU SAMPLES AND SLUDGES 34    0.000   

SM1-D DU SAMPLES AND SLUDGES 42     0.000  

UFEP EU IN PROCESS CYL 9   8.299    

UFNP NU IN PROCESS CYL 6    2.298   

UFDP DU IN PROCESS CYL 2     0.804  

A 10-strata mock enrichment facility example is considered, with each stratum containing different 
number of item/batches of radioactive materials like plutonium (PU), highly enriched uranium (HEU), 
low enriched uranium (LEU), natural uranium (NU), depleted uranium (DU), thorium (TH) with 
different material quantities as shown in table 1. The mock strata are subjected to a diversion strategy 
where a goal amount of material G is diverted by taking the material from all the items within a 
stratum equally, yielding the same type of “defect” in each item. This type of diversion strategy makes 
it harder for the instruments to detect the defects and shall be termed ‘Equal’ or ‘Minimizing IP’ 
diversion strategy. Various detection strategies are employed on each of the defected strata using 
various instrument types with different number of measurements per instrument type, seal checks and 
surveillance. Table-2 depicts the type of detection strategies applied on each of the ten strata with 



exact numbers of instrumental measurements and instrumental RSDs. The C/S correspond to whether 
items are sealed or under surveillance. Verification I or B correspond to whether verification is done 
based on items or batches. All the strata here use item-based verifications which means there are no 
batches in the facility. The rest of the columns given information on number of items measured using 
respective instrument types and their respective instrumental relative standard deviations (RSDs). The 
H measurements correspond to gross measurements with 15% RSD, F measurements correspond to 
partial measurements with 5-10 % RSD, and D measurements correspond to bias measurements with 
0.5-1 % RSD. Notional values are depicted in the table 2. The stratum DP curves are evaluated by 
varying the goal diversion amount from 0 to 2 SQ in steps of 0.01 SQ by applying the said diversion 
and detection strategies. Once the stratum level DP curves are evaluated using the deterministic or 
stochastic models described in reference C.Gazze et al [1], a facility-wide diversion strategy is applied 
where the facility-wide goal amount is varied from 0 to 2 SQ in steps of 0.01 SQ. At each diversion 
step there will exist many possible combinations of splitting the facility-wide goal amount and 
acquiring them from the existing 10 strata. These combinations of goal amounts when inputted in 
stratum level DP curves yield respective stratum level DP values which when aggregated using event 
independence principle will yield multiple aggregate detection probabilities (ADPs). Computing the 
worst-case ADP value and its combination of stratum goal amounts provides a measure of the 
effectiveness of stratum-level detection strategies at the facility-level. The optimization models are 
built and applied on the mock facility subjected to mock diversion and detection strategies to obtain 
the combination of material diversions that yield minimum aggregate detection probability. 

Table 2. Mock Enrichment Facility - Stratum-level Detection Strategies 

Stratum ID Description C/S Verification 
I or B H F D RSD H RSD F RSD D 

UFE EU 30B PROD CYL IN STORE N I 1 2 1 15% 5% 0.50% 

UFN NU 48Y FEED CYL IN STORE N I  3 1 15% 7% 0.50% 

UFN-H NU HEELS CYL IN STORE N I 1   15%   

UFD DU 48Y TAILS CYL IN STORE N I 6 2 4 15% 9% 1.00% 

SM1-E EU SAMPLES AND SLUDGES N I 1   15%   

SM1-N NU SAMPLES AND SLUDGES N I 1   15%   

SM1-D DU SAMPLES AND SLUDGES N I 1   15%   

UFEP EU IN PROCESS CYL N I   1   0.50% 

UFNP NU IN PROCESS CYL N I   1   0.50% 

UFDP DU IN PROCESS CYL N I   1   1.00% 

EXPLORED METHODOLOGIES AND THEIR WORKINGS 
Among the explored methods, the brute-force method using algebraic partitions or compositions is 
taken as the gold standard for validating other methods, because the method will always yield the 
minimum ADP value and its material combination. The brute force model developed using algebraic 
compositions explores and evaluates all possible combinations of goal amounts, computes respective 
ADP values and identifies the combination that has the minimum of all ADP values. As the model 
evaluates all possible combinations in order to identify the minimum ADP combination, the result 
thus acquired is always accurate. The process of evaluating all possible combinations and their ADPs 
becomes computationally expensive both in RAM resources and in execution times. Because the total 
number of combinations that the model has to evaluate and search for the minimum ADP combination 



increase nonlinearly with increase in number of strata and total goal diversion amount and increases 
nonlinearly with decrease in minimum increment size resulting in increase in RAM resources and 
execution times. To be able to solve the apparent optimization problem using the limited 
computational power available in the general-purpose computers two viable research options have 
been explored. The first one involves the development of heuristic optimization techniques that will 
try to converge to the minimum ADP combination with faster execution times but might be inaccurate. 
Greedy Algorithm, an example heuristic method, instead of going through all possible combinations 
like the brute force method employs “stepping-agents”, each agent explores the input space in an 
incremental fashion using the previous step information (calculated minimum ADP combination at a 
lower goal amount), along its assigned minimum ADP pattern using formulas/checks and steps 
towards and until they converge at their respective local minimum. The agent with least local 
minimum combination is taken as minimum ADP combination at the next higher incremental goal 
amount. This method requires a continuing process of reviewing the results from another more 
accurate method like brute force to identify patterns of discontinuities. The more such patterns can be 
recognized and incorporated into the Greedy Algorithm, the more likely results will be accurate. The 
main advantage of the Greedy Algorithm is that computational time is independent of number of 
strata, which means it takes almost the same amount of time to evaluate minimum ADP curves for 10 
strata and 100 strata mock facilities. A second research option involves development of accurate 
methods using the principles of dynamic programming. In dynamic programming the overall complex 
optimization problem is split into multiple simple optimization problems and solved separately and 
recursively updated to acquire the final result. Splitting into simple problems allows the models to 
work within the framework of generally available computational resources and acquire results with 
relatively faster execution times. The pareto frontiers model described by Bevill et al [2,3] is one such 
method which uses a single pareto frontier per stage and evaluates one stratum with the current 
frontier in every stage, thereby recursively updating the frontier of global minimum combinations in 
every stage until combination with the final stratum is evaluated in the final stage. The pareto frontier 
thus obtained in the final stage contains the combinations and results of the overall global minimum 
of the original problem. The methodology and development of this dynamic programming approach 
is discussed by Bevill et al [2]. The present paper provides a proof of optimality of the method. An 
extension of the Pareto frontiers method that uses multiple parallel pareto frontiers per stage is also 
discussed here. Results and a proof of global minimum for this extension are also provided. The 
advantage of this use of multiple parallel frontiers is that it can be parallelized and thereby reduce the 
execution time and provide the same accuracy as the brute-force and “single” frontier methods. 

MODEL PROOFS, RESULTS & VALIDATION WITH BRUTE FORCE METHOD 
In this section, possible proof statements of each developed method are presented along with their 
results presented and validated to that of the brute-force method. Let G be the total goal amount the 
diverter is planning to acquire in total from all the strata in a facility such that G1, G2, G3, …., Gn, 
represent the amount taken from each individual stratum and ∑Gi=G. The function DPi(Gi) gives the 
DP curve for the ith stratum of a facility or state as a function of the stratum goal amount Gi. Such DP 
curves of each stratum are evaluated beforehand and are sampled from in order to compute aggregate 
detection probabilities (ADPs) as below. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒	𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑨𝑫𝑷(𝑮) = 	1	 −	:(1 − 𝐷𝑃!(𝐺!))
"

!#$

 



Let Cj = {G1, G2, G3, …., Gn}j represent the jth combination of stratum goal amounts which sum up to 
the total goal amount G and j takes values from 1 to m (some finite number of combinations) and the 
number of possible combinations m is determined by the total goal amount G, the total number of 
strata, and the minimum goal increment size.  The minimum ADP is given as follows: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚	𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒	𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑴𝒊𝒏	𝑨𝑫𝑷(𝑮) = min
%#$	'(	)

	E1	 −	:F1 − 𝐷𝑃!(𝐺!)G
"

!#$

H
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Brute Force Model: Proof by definition & Results 

The computational model of the brute force method makes use of an algebraic compositions function 
[4] that uses stars and bars graphical techniques [5] to evaluate all possible ways or combinations Cj of 
splitting the original goal amount G. Therefore, by definition “the minimum of all possible values of 
any finite sample space is the global minimum of that sample space”, the brute force method always 
yields the global minimum combination for any specified goal diversion amount G and the brute force 
results as shown in figure 1(a) are taken as golden standard in validating the results of other methods 
for calculating or approximating Min ADP. 

Greedy Algorithm: Component proof statements & Results 
The Greedy Algorithm contains multiple checks or formulas that identify patterns and paths that each 
of agents uses in order to step through until a local minimum is achieved. The agent whose local 
minimum has least value compared to that of other agents is taken as Min ADP. In order to identify 
new patterns, the algorithm makes use of accurate Min ADP results from methods like brute force 
method or pareto frontiers. Table 3 gives various patterns that are identified from the results of brute 
force method and table 4 gives the descriptions and component proofs or checks that guide respective 
agents of the algorithm to step through the input parameter space. The figure 1(b) depicts the Min 
ADP results from Greedy Algorithm and the results agree with brute-force results of figure 1. 

Table 3. Various results from Brute force method used for pattern identification. 

Goal Amount Min ADP Min ADP Combination Pattern Number Agent 
Number 

0.01 

0.02 

0.03 

0.04 
 

0.0028696 

0.0058002 

0.0067801 

0.0074324 
 

"0 0 0 0 0 0 0 0.01 0 0" 

"0 0 0 0 0 0 0 0.02 0 0" 

"0 0.03 0 0 0 0 0 0 0 0" 

"0 0.04 0 0 0 0 0 0 0 0" 
 

Pattern-01 

(Upper bound Pattern) 

All 

(1,2 & 3) 

1.21 

1.22 

1.23 

1.24 

1.25 
 

0.092207 

0.093563 

0.094942 

0.096325 

0.097723 
 

"0 0.08 0 1.13 0 0 0 0 0 0" 

"0 0.08 0 1.14 0 0 0 0 0 0" 

"0 0.08 0 1.15 0 0 0 0 0 0" 

"0 0.09 0 1.15 0 0 0 0 0 0" 

"0 0.09 0 1.16 0 0 0 0 0 0" 
 

Pattern-02 

(Forward Stepping Pattern) 
1 

1.15 

1.16 
 

0.08441 

0.085739 
 

"0 0 0 1.15 0 0 0 0 0 0" 

"0 0.08 0 1.08 0 0 0 0 0 0" 
 

Pattern-03 
(Re-Distribution Pattern) 2 

0.01 

0.02 

0.03 
 

0.0039088 

0.011983 

0.01343 
 

"0 0 0 0.01 0 0 0 0 0 0" 

"0 0.01 0 0.01 0 0 0 0 0 0" 

"0 0 0 0.03 0 0 0 0 0 0" 
 

Pattern-04 
(Re-Combination Pattern) 3 



Table 4. Description and Component proof statements/checks of identified patterns. 
Pattern 

No Identified Pattern Description Component proof statements /checks 

1. Upper Bound Pattern 

The collection of points acquired 
from computing minimum of all 

stratum DP values at each diversion 
amount ‘G’ act as upper bound to Min 

ADP at that diversion amount ‘G’. 

Min	ADP(𝐺) 	<= 	 min
!"#	%&	'

𝐷𝑃!(𝐺) 

For	′n'	strata	facility, 

	′G′	is	any	goal	amount, 

2. Forward Stepping Pattern 
Adding material to a stratum which 

causes minimum rise in ADP is more 
likely to yield Min ADP. 

𝑎𝑟𝑔𝑚𝑖𝑛
!"#	%&	'

O
𝐷𝑃!(𝐺! + 𝑑𝐺) − 𝐷𝑃!(𝐺!)

1 − 𝐷𝑃!(𝐺!)
T 

Above statement gives the stratum-i from 
which taking the increment amount ‘dG’ shall 
cause minimal rise in ADP value. ‘Gi’ is the 
current material which has already taken from 
stratum ‘i’ before the new increment amount 
‘dG’ is taken from it.  Since stratum level DP 
curve is a non-decreasing function of goal 
diversion amount ‘G’. 

3. Re-Distribution Pattern 

Splitting the existing material ‘G’ 
from stratum in upper bound pattern 
to another stratum might lower the 

ADP. The stratum whose cumulative 
DP is minimum of all other strata up 
until current ‘G’ is the one to acquire 

the material to lower ADP. 

𝑎𝑟𝑔𝑚𝑖𝑛
!"#	%&	'

UV𝐷𝑃!(𝑗)
(

)"*

X 

Above statement gives the stratum-i from 
which existing material from Upper bound has 
to be split and taken from which will cause 
least rise in DPi which in turn causes minimal 
rise in ADP. 

4. Re-Combination Pattern 

Instead of applying forward stepping 
on multiple stratum simply Re-

combining the distributed material 
and acquiring it from stratum of 

Upper bound pattern might decrease 
the ADP. 

min
!"#	%&	'

𝐷𝑃!(𝐺) < 𝐴𝐷𝑃(G1, G2	 … , G+) 

Let G1, G2 …, Gi be current combination of ADP 
and 𝐺 = ∑ 𝐺!'

!"# . 

 
Pareto Frontier Methods: Proof statements on Optimality transfer/Bellman’s equation & Results 
The proof of optimality transfer or Bellman’s equations for the pareto frontier methods are discussed 
below, stating that such methods will always yield global minimum combinations and are as accurate 
as the brute force method. We consider two versions of the Pareto frontier method. The first, which 
we refer to as the Single Frontier method, starts by applying the brute force method to the first two 
strata from the mock facility and then identifying the minimum DP at each unique amount 𝐺! + 𝐺" 
for the combination of these strata (the “frontier”). This “Stage-01” is indicated in figure 2. In stage-
02, the stage-01 frontier and third stratum are similarly evaluated to obtain new global minima values 
and the Pareto frontier is updated with new set of global minimum values. Thus, as shown in figure 
3, the Pareto frontier is thus inductively updated using one stratum at a time until the overall global 
minimum or final pareto frontier is evaluated. By applying the first step of combining two strata 
across multiple pairs of strata the method can be parallelized to reduce real time of the computation. 
This Multiple Frontiers method, schematically shown in figure 3, starts by evaluating multiple pairs 
of frontiers in stage-01 by brute force, giving rise to one frontier per stratum pair. Each such frontier 
contains the global minimum combinations corresponding to the respective pair of strata. In stage-02, 
the brute force method is applied on each pair of frontiers reducing the number of frontiers by half or 
ceil(n1/2). Similarly, the frontiers are recursively evaluated in pairs in each stage until the final frontier 
is evaluated in final stage and the final frontier contains the global minimum combinations of the 



original problem. Through parallelization the total time is reduced but the total brute force 
calculations remain the same. The proof of optimality of both the frontier methods contains the 
following components: 

1. Sub-Proof 1: First-stage Pareto frontiers constitute global minimum combinations due to application 
of brute force method on each stratum pair, 

2. Sub-Proof 2: At any stage the updated Pareto frontiers always yield combinations corresponding to 
global minima as long as previous stage frontiers are made of combinations corresponding to global 
minima, 

3. Using 1 & 2, an inductive argument proves that final stage Pareto frontiers contains combinations 
corresponding to overall global minimum. 

Table 5. Proof statements of Pareto frontier methods (Single and Multiple frontier methods). 

Single Frontiers Method - Proof Statements 

Methodology Figure 3 

Nomenclature 

Here, 

i correspond to stratum number & i = 1, 2, 3, …, n (Total number of strata) 

j corresponds to combination number & j = 1, 2, 3, …, m (Total possible combinations) 

k corresponds to stage number & k = 1, 2, 3, …, n-1 (Total possible stages) 

Sub-Proof 1 𝑃𝐹"(𝐺) = min
#$"	&'	(

	+1	 −	./1 − 𝐷𝑃),#1𝐺),#23
+

)$"

4 

At stage-1, applying brute force method on stratum 1 & 2 to get stage-1 Pareto frontier (PF1) 

Sub-Proof 2 𝑷𝑭𝒌(𝐺) = min
#$"	&'	(

11 − (1 − 𝑷𝑭𝒌-𝟏(𝐺/-",#))(1 − 𝐷𝑃)$/0"(𝐺/0",#))2 
At any stage-k, applying brute force method on frontier k-1 & stratum k+1 to get stage-k frontier (PFk) 

Transfer of 
Optimality 

Sub-Proof 1 establishes that the combinations and ADP values of the first stage pareto frontier PF1 are 
those of global minima. Sub-Proof 2 is the equivalent Bellman’s optimality condition [6, 7, 8] of dynamic 
programming for the current aggregation problem., through a chaining effect, the condition of global 
minima is transferred from first stage pareto frontier PF1 to second PF2, then to third PF3 and so on up 
until final stage pareto frontier PFn-1. Therefore, the final stage pareto frontier will always give minimum 
ADP values at every point for the apparent n-stratum ADP optimization problem, provided we use the 
brute force method to update the frontier. 

Multiple Frontiers method - Proof Statements 

Methodology Figure 4 

Nomenclature 

Here, 
i correspond to stratum number & i = 1, 2, 3, …, n (Total number of strata) 

j corresponds to combination number & j = 1, 2, 3, …, m (Total possible combinations) 

k corresponds to stage number & k = 1, 2, 3, …, x (Total possible stages x = ceil(log2(n/2))) 

l corresponds to frontier number & lk = 1, 2, 3, …, yk (Total possible frontiers yk = yk-1/2 and y1=int(n/2)) 

Sub-Proof 1 
𝑃𝐹1,/$"(𝐺) = min

#$"	&'	(
	71	 −	 . /1 − 𝐷𝑃)1𝐺),#23

+1

)$+1-"

8 

At stage-1, applying brute force method on stratum pairs 2l & 2l-1 to get stage-1 Pareto frontier-l 
(PFl,k=1) 



Sub-Proof 2 
𝑷𝑭𝒍,𝒌(𝐺) = min

#$"	&'	(
91 − /1 − 𝑷𝑭𝟐𝒍-𝟏,𝒌-𝟏1𝐺/-",#23 /1 − 𝑷𝑭𝟐𝒍,𝒌-𝟏1𝐺/-",#23: 

At any stage-k, applying brute force method on frontier pairs 2l & 2l-1 of previous stage k-1 to get 
stage-k’s frontier-l (PFl,k) 

Transfer of 
Optimality 

The Sub-Proof 1 establishes that the combinations and ADP values of first stage pareto frontier PFl,k=1 
are that of global minima. Sub-Proof 2 is the equivalent Bellman’s optimality condition [6, 7, 8] of dynamic 
programming for the current aggregation problem., through chaining effect, the condition of global 
minima is transferred from first stage pareto frontiers PFl,k=1 to second PFl,k=2, then to third PFl,k=3 and so 
on up until final stage pareto frontiers PFl,k=x, where x = ceil(log2(n/2)) is final stage of the approach. 
Therefore, the final stage pareto frontier will always give minimum ADP values at each and every point 
for the apparent n stratum ADP optimization problem, provided we use the brute force method of to 
update the frontier pairs.  

The figures 1(c) and 1(d) validates the minimum ADP results from Single and Multiple frontier 
method with that of brute-force results of figure 1(a). 

COMPARISON OF EXECUTION TIMES AMONG ALL METHODS 
The execution times (wall times) are evaluated for various models to compare the performance among 
the models with increase in the number of strata. The same 10-strata enrichment facility data has been 
repeated 10 times to yield 100-strata facility data. The DP curves are generated for the 100 strata from 
0 to 2 SQ with 0.01 SQ as minimum increment size. Then Min ADP curves are evaluated for the 
generated DP curves by considering first two, first three and so on until first 100 strata using Greedy 
Algorithm, Single Pareto Frontier method, Multiple Pareto Frontier methods (using loops, using 
arrays, using dask arrays). Respective execution times are computed simultaneously and are plotted 
against the number of strata as shown in figure 4. All models except Greedy Algorithm show linear 
dependence of execution time on number of strata. The Greedy Algorithm has no dependence on the 
number of strata and always executes around 4 seconds of wall time. All the models are executed on 
2.40GHz, 6 Cores, 12 Logical Processors, 16 GB Physical Memory (RAM) computer and the wall 
times correspond to said computer and may change depending on the computer employed. 

CONCLUSIONS 
The brute-force method though accurate becomes impractical with increase in number of strata or 
further refinement of grid. Both these actions result in non-linear increase in total number of possible 
combinations of acquiring the goal amount from all strata making the brute force method impractical. 
Based on Bellman’s optimality condition, both the single and multiple pareto frontier methods are as 
accurate as the brute-force method and they come with the computational advantage of being 
executable on general purpose computers. All frontier models have approximately linear time 
dependance on number of strata whereas the multiple frontiers model (single-core parallelized) is 
fastest among all the frontier models. Greedy algorithm being heuristic cannot be as accurate as brute-
force method, but the model is exceptionally faster and the execution time is independent of the 
number of strata. 

RECOMMENDATIONS AND FUTURE WORK  
The future research involves improving Greedy algorithm’s accuracy by further identifying new 
patterns. The entire process of identifying patterns, building checks and updating Greedy algorithm 
is currently done manually, a viable way of automating this entire process shall be explored. Also, 
potential hybrid models by combining Greedy algorithm with frontier models shall be explored. 
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Figure 1. Mock Enrichment Facility stratum DP curves along with minimum ADP curve using (a) Brute 
Force method (b) Greedy algorithm (c) Single Frontier method and (d) Multiple Frontiers method. 

Figure 2. Pareto Frontiers Methodology - Single Frontier Method 
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Figure 3. Pareto Frontiers Methodology - Multiple Frontiers Method 
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Figure 4. Execution times (wall time) vs. Number of strata for various methods 
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