
Proceedings of the INMM & ESARDA Joint Annual Meeting  

August 23-26 & August 30-September 1 2021, Virtual Meeting 

 

1 

 

ATTRIBUTION OF SEPERATED PLUTONIUM USING MACHINE LEARNING 

TECHNIQUES 

 

Patrick J. O’Neal1 and Sunil S. Chirayath1,2  

Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843-

3133Center for Nuclear Security Science & Policy Initiatives, Texas A&M University, College 

Station, TX 77843-3473 1 patrick.oneal@tamu.edu  2 sunilsc@tamu.edu  

ABSTRACT 

The ability to find the conditions in which a sample of plutonium was produced would be a 

powerful tool to support nuclear nonproliferation efforts. This capability would act as a deterrent 

to smuggling efforts, and also help regulatory agencies verify declared nuclear activities. Work at 

Texas A&M University yielded a nuclear forensics methodology, which is capable of determining 

separated plutonium’s reactor-type of origin, burnup, and the time since irradiation (TSI)—three 

parameters of interest. The methodology used a set of ten intra-element isotopic ratios found in 

separated plutonium, which was compared to a library of isotopic ratio values produced using 

neutronics simulations for reactors of interest. By calculating the probability that the isotopic ratio 

set matched a set in the library, the methodology could predict the three parameters of interest of 

the sample. One shortcoming of this methodology was an inability to correctly attributing spoofed 

plutonium, where plutonium sourced from two different reactors or two different fuel burnup 

levels are mixed. A new methodology to rectify this vulnerability using machine learning (ML) 

technique is under development, instead of the maximum likelihood calculation previously used. 

The new methodology attributes in three steps, one for each parameter, rather than resolving all of 

the three parameters simultaneously like the previous maximum likelihood approach. First, a 

support vector machine classifier with a set of seven isotopic ratios finds the reactor of origin and 

a set of regression models trained using gaussian process regression predicts the burnup with a 

different set of seven isotopes. Last, TSI is calculated analytically using decay equations. Thus far, 

the new methodology is capable of attributing pure plutonium samples and has been validated 

using experimental data. The next step will to be augment the classifier training data set with 

spoofed plutonium data. 

INTRODUCTION 

Nuclear forensics capabilities to enable the attribution of illegal special nuclear material (SNM) 

could deter the adversary from attempting malicious acts. Another use for a nuclear forensics 

methodology capable of attributing the production conditions of SNM is the verification of 

declared activities at facilities under nuclear safeguards agreements with the International Atomic 

Energy Agency (IAEA). Hence, forensics methodology use-case could help deter diversion of 

SNM at the state level or the theft of SNM by facility insiders. Previous work at Texas A&M 

University produced a nuclear forensics methodology capable of finding a separated plutonium 

sample’s reactor-type of origin, burnup, and time since irradiation (TSI) [1] [2]. This methodology 

utilized a set of ten intra-element isotope ratios as the main forensics signature and compared the 

isotope ratio values against a reference library of data in performing a maximum likelihood 

calculation to determine the most probable reactor-type, burnup, and TSI of the plutonium sample. 

This methodology proved very successful in the attribution of pure plutonium samples, those 

where all the plutonium was produced with the same reactor-type, burnup, and TSI, but it was 
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unable to attribute the samples effectively if there was any mixing. A new methodology that built 

upon the strengths of the previous work has been under development in hopes it can attribute these 

mixed or “spoofed” plutonium samples. The main change is that instead of attribution using a 

maximum likelihood calculation, the attribution is performed using models trained with machine 

learning techniques. 

PREVIOUS METHODOLOGY 

The main forensics signatures used in both methodologies is a set of intra-element isotope ratios. 

In the previous methodology 137Cs/133Cs, 134Cs/137Cs, 135Cs/137Cs, 136Ba/138Ba, 150Sm/149Sm, 
152Sm/149Sm, 154Eu/153Eu, 240Pu/239Pu, 241Pu/239Pu, and 242Pu/239Pu were used [1]. The reason that 

the isotope ratios must not feature isotopes of different elements is to ensure that the methodology 

can be agnostic of the separation technique used to produce plutonium, as different proportions of 

each element will be separated depending on the details of the chemical separation process. A 

reference library was produced using a set of fuel depletion calculations for various reactor types 

for a range of burnup (0 to 5 GWd/MTU) and TSI (0 to 5000 days) using the Monte Carlo N-

Particle Transport code (MCNP) [3]. The collection of burnup steps and times steps formed a 

reference matrix for each of the isotope ratios of interest.  Some reactors modelled for inclusion in 

the methodology included a generic pressurized water reactor (PWR), a generic pressurized heavy 

water reactor (PHWR), and a generic fast breeder reactor (FBR), as well as experimental 

irradiation positions for the High Flux Isotope Reactor (HFIR) and Missouri University Research 

Reactor (MURR). The two experimental irradiation positions were used to produce validation data 

that was used to test the forensics methodology’s performance [4] [5]. 

The actual attribution was performed by comparing the ten isotope ratios found using a collection 

of destructive and non-destructive assay techniques to each value in every reference matrix set. 

For each burnup and time point a product of probability values that an isotope ratio from the 

experimental sample matches the isotope ratio corresponding to that burnup and TSI value. The 

largest value for this product indicates which burnup and TSI value for each reactor would be the 

most likely to produce the set of isotope ratios found within the experimental ratio. Similarly, the 

reactor-type with the greatest maximum likelihood value is the most likely to have produced the 

experimental sample. A validation of this method was conducted by irradiating natural uranium at 

HFIR and MURR, and then performing separations and assays at Texas A&M University [4] [5]. 

In the validation, the correct reactor-type of origin, burnup, and TSI were found using the reference 

data library and the maximum likelihood calculation. 

NEW MACHINE LEARNING METHODOLOGY 

The primary functional difference between the previous methodology and the new machine 

learning methodology is the deconvolution of the resolution of the three parameters of interest as 

well as a reduction in intra-element isotope ratios required. The previous methodology resolved 

all three parameters at once, while the machine learning methodology divides the attribution into 

three steps, first a classification model is used to find the reactor-type, then a regression model is 

used to find the burnup value, and last an analytic calculation is to find TSI. In the machine learning 

methodology only eight isotope ratios were used: 134Cs/137Cs, 135Cs/137Cs, 136Ba/138Ba, 
150Sm/149Sm, 152Sm/149Sm, 154Eu/153Eu, 240Pu/239Pu. The first step of the machine learning 

methodology was to produce a training dataset. This was accomplished by randomly sampling a 

reactor-type, burnup, and TSI value from the available reactor types, 0-5 GWd/MTU, and 0-5,000 



Proceedings of the INMM & ESARDA Joint Annual Meeting  

August 23-26 & August 30-September 1 2021, Virtual Meeting 

 

3 

 

day respectively, and then using the simulated data from the previous methodology’s MCNP 

simulations the burnup interpolation and time decay calculations were performed to produce the 

isotope ratio set corresponding to those parameters of interest. The optimal training data set size 

was found to be 12,500 data points, which corresponds to 2,500 data points per reactor type. A 

logarithm transformation and a Z score standardization was used on the training data set. At the 

time of generating the training data, a test data set of the same size was also produced, with great 

care taken to ensure that no point was common to both sets. 

MATLAB Statistics and Machine Learning Toolbox [6] was used to train the reactor-type 

classifier and burnup quantification models. The reactor-type classification model was trained 

using Support Vector Machines (SVM). The SVM classifier used a cubic kernel and the 
135Cs/137Cs, 136Ba/138Ba, 150Sm/149Sm, 152Sm/149Sm, 154Eu/153Eu, 240Pu/239Pu isotope ratios. A 

Gaussian Process Regression (GPR) was used to train the burnup quantification regression models. 

One model was trained per reactor-type of interest. The GPR kernel was exponential and the 
134Cs/137Cs, 136Ba/138Ba, 150Sm/149Sm, 152Sm/149Sm, 154Eu/153Eu, 240Pu/239Pu isotope ratios were 

used. The TSI quantification was performed using the 134Cs/137Cs ratio by interpolating what the 
134Cs/137Cs ratio would have been at discharge from the reactor (TSI=0) using the predicted 

reactor-type, burnup, and the reference data library. With knowledge of the current 134Cs/137Cs 

ratio value and the discharge 134Cs/137Cs ratio the TSI can be solved for using a radioactive decay 

equation. 

RESULTS 

After the appropriate models were trained, they were tested for their accuracy using the testing 

data set. The reactor-type classifier achieved a very high accuracy (>95%). This confirms that the 

seven isotope ratios used have sufficiently distinct features for each reactor type. The only source 

of misclassifications were test data points that had very low burnup values (<10 MWd/MTU). This 

can be explained by the fact that at such low burnup values the isotope ratios have not had the 

opportunity to reach the trends required for reactor-type discrimination. The performance of the 

regression models for burnup quantification was evaluated by finding the Root Mean Square Error 

(RMSE) for each GPR model. These values can be seen in Table 1. All models were found to 

perform with sufficient accuracy. 

Table 1. RMSE values for each burnup quantification model 

Reactor Type 
RMSE 

(GWd/MTU) 

PWR 0.149 

PHWR 0.202 

FBR 0.116 

MURR 0.034 

HFIR 0.054 
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A final test was performed to find how the machine learning methodology fared when tasked with 

attributing the validation samples produced using real irradiations. The performance and a 

comparison with the maximum likelihood method can be found in Tables 2 and 3. The ML 

methodology was able to correctly identify the reactor-type for both the HFIR and MURR 

plutonium samples. The burnup and TSI were quantified with similar success to the maximum 

likelihood methodology, which was a very positive indication for the ML methodology. 

Table 2. Performance comparison for attribution of the HFIR sample 

 Burnup Prediction  TSI Prediction 

Maximum Likelihood/Measured 0.984 1.146 

Machine Learning/Measured 0.963 1.137 

 

Table 3. Performance comparison for attribution of the MURR sample 

 Burnup Prediction TSI Prediction 

Maximum Likelihood/Measured 1.038 0.959 

Machine Learning/Measured 1.074 0.991 

 

CONCLUSION 

The machine learning methodology performed up to the standard set by the maximum likelihood 

methodology in the attribution of pure samples. The immense potential of machine techniques to 

determine very difficult to identify relationships within a data set offers a great promise in 

attributing more complex plutonium samples in the future. The ability of the machine learning 

methodology to deconvolute the attribution process and focus on each parameter of interest 

separately allows the data to be used in a more efficient manner and also opens the possibility for 

the addition of additional parameters for attribution. The next step in this research effort is to 

produce a new classifier trained with a data set that has been augmented with “spoofed” plutonium 

samples. Ultimately, this will be the true test of whether the machine learning methodology offers 

a significant advantage over the maximum likelihood methodology. Another continuation of this 

work is the production of additional validation samples, via irradiation and separations. 
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