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Abstract. Whether safeguarding Iranian uranium enrichment facilities, denu-

clearizing North Korea, or verifying limits on U.S. and Russian arsenals, nuclear

safeguards and arms-control traditionally require intrusive on-site inspections to

perform verification tasks. In such applications, the ability to localize a radioac-

tive source is imperative for identifying anomalies when no significant neutron

emitters are expected or declared to be present, such as for confirming the ab-

sence of clandestine withdrawal stations in the centrifuge hall of a gas-centrifuge

enrichment plant or undeclared warheads in a storage facility. We are interested

in the role of autonomous mobile robots, which, if designed properly, may be more

effective and efficient and less intrusive than their human counterparts. Toward

developing such a capability, we have constructed an “Inspector Bot,” comprised

of three boron-coated straw detectors azimuthally distributed within a cylinder

of high-density polyethylene, which is mounted on an omni-directional robotic

platform. While many reported methods for source localization use only total

detected counts, our Inspector Bot is specifically designed to provide directional

and spectral sensitivity, in addition to gross counts, by utilizing the signals from

the three detectors. The detection system has been extensively characterized by

MCNP modeling, which has been benchmarked to experiments conducted at the

Princeton Plasma Physics Laboratory. For source localization using our Inspec-

tor Bot, we utilize a simple system of equations which, with the three detectors,

is solved to estimate the direction to the source. We finally apply the result of

the directional model in the framework of a particle filter.
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Introduction

Nuclear safeguards and arms-control traditionally require intrusive on-site inspections to per-

form verification tasks. While hand-held radiation measurements are a useful tool, they can

be costly or undesirable for routine inspections. If designed properly, autonomous robotic in-

spectors may be able to perform radiation measurements less intrusively and more effectively,

efficiently, and safely than current human-based methods.1 By replacing or supplementing

human inspectors with autonomous mobile robots, sensitive information – such as facility

design, warhead design, or radiation measurements – need not cross facility walls. In appli-

cations where no significant neutron emitters are expected or declared to be present, such

as confirming the absence of clandestine withdrawal stations in the centrifuge hall of a gas-

centrifuge enrichment plant or undeclared warheads in a storage facility, the ability to localize

a radioactive source is imperative for identifying anomalies. In the former example, elevated

neutron count rates in cascade halls, driven by (alpha, n) reactions on fluorine, could reveal

the presence of hidden uranium hexafluoride containers.2 In the latter case, we could consider

scenarios pertinent to potential future arms-control treaties which may require verifying the

absence of treaty-accountable objects.

To examine the potential of autonomous, mobile, directionally-sensitive neutron detectors to

perform such verification tasks, we have constructed an “Inspector Bot” comprised of three (or

more 3) boron-coated straw (BCS) detectors azimuthally-distributed within a cylinder of high-

density polyethylene (HDPE), which is mounted on an omni-directional robotic platform.4

The HDPE attenuates neutrons as they traverse through the detector system, generating a

neutron flux gradient between the detectors. The detectors and HDPE are also surrounded

by an aluminum and cadmium casing, the latter of which attenuate neutrons below 0.5 eV,

shielding the detectors from an influx of thermal neutrons which would otherwise increase the

total detected counts and effectively diminish the relative difference in the neutrons captured

within each detector. While many reported methods for source localization use only total

detected counts, our Inspector Bot is specifically designed to provide directional sensitivity,5

in addition to gross counts, by utilizing the signals from the three detectors; this functionality

relies on the difference between the signals.

In the following section, we present a detailed, experimentally-calibrated MCNP model of

the Inspector Bot. Using both experimental and simulated data, we then examine the direc-

tional sensitivity of the detection system. We conclude by demonstrating how the directional

sensitivity may be leveraged for localizing an unknown neutron source.

Model Calibration

The detection system has been extensively characterized by MCNP modeling,6 which has

been benchmarked to experiments conducted at the Princeton Plasma Physics Laboratory

(PPPL). A Cf-252 source (estimated 1.8 × 107 n/s at time of measurement) was used to

calibrate and test the detection system. Figure 1 depicts the Inspector Bot on-site at PPPL,

2



along with the MCNP models of the Bot and the Cf-252 source and storage cask. A series

of measurements were performed with various configurations within the TFTR Test Cell

at PPPL. The Test Cell is a large (34 m by 45 m floor, 16 m ceiling) concrete room. For

calibrating the MCNP model, we used a set of measurements acquired for five-minutes with

the Bot facing directly toward the Cf-252 source at three increasing standoff distances. For

each measurement, the counts in each detector were simultaneously recorded.

Figure 1: Inspector Bot and Cf-252 source cask located in the TFTR Test Cell at PPPL.
To the left of the robot is a slice of the MCNP model (omni-directional wheels are included but out of

the image plane); inset is a cross-sectional view of the BCS detectors (1” diameter) and HDPE moderator

(8” diameter). The current Inspector Bot has three BCS detectors with room to accommodate six. To the

right of the source cask is a cross-sectional view of the MCNP model; inset is a zoomed-in view of the

source capsule model, including the stainless steel inner and outer capsules and polymer filling.

A comparison of the MCNP model and the experimental results is visualized in Figure 2,

where both the detected count rate and the front-to-back ratio, defined as the ratio of the

counts detected in the front detector divided by the average of the two back detectors, are

plotted as a function of the standoff distance between the central axes of the Cf-252 and the

Inspector Bot. The process of fine-tuning the model to minimize the discrepancy with the

experiment revealed a few important details regarding the sensitivity of the detection system.

It is evident in the experimental data that the detected counts do not follow the traditional

inverse-square law. Rather, the counts fall off following a shallower slope with respect to

distance. We attribute this trend to the effect of the surrounding environment. While the

concrete floor was the predominant factor, MCNP modeling revealed that the walls and ceiling

also contributed to achieving a model which accurately reproduced the experimental results,

even though the nearest wall was 12 m from the Cf-252. Another very important detail was

the source capsule. As opposed to using a simple point source in the MCNP model, we include

a detailed model of the source capsule, including the stainless steel outer capsule, stainless

steel inner capsule, and polymer filling which holds the inner capsule in place.7 Although the

presence of the capsule had a small effect on the absolute counts, the capsule was a key factor

in achieving good agreement with the experimental front-to-back ratio. The source spectrum
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affects the front-to-back ratio, as well. The Cf-252 spectrum is commonly represented by the

Watt spectrum with probability density function p(E) = C exp(−E/a)
√

sinh(bE). While in

this work we use the Cf-252 Watt spectrum which corresponds to that found in the ENDF/B-

VIII.0 database (a = 1.1800, b = 1.03419), we also note that a harder alternative spectrum

(a = 1.025, b = 2.926) results in a lower front-to-back ratio. This observation is indicative of

the spectral sensitivity of the detection system. For instance, when a 6 cm thick polyethylene

cylinder is positioned around the source capsule, the front-to-back ratio for the 5 m standoff

distance increases from 2.48 for the bare source to 3.43 for the moderated source.8

Figure 2: Calibration of MCNP model to experimental measurements. Left: Detected counts

in the front detector, average counts of the back two detectors, and total counts of all three detectors as a

function of standoff distance for the robot pointed directly toward the source. There is excellent agreement

between experimental and simulated data points. Also evident is that the counts do not follow a traditional

inverse-square law, attributed to the effect of the surrounding environment (concrete floor, ceiling, and

walls). Right: Front-to-back ratio (calculated as the front divided by the average of the back) as a function

of standoff distance. One-sigma statistical error bars are included for the experiment, as well as the one-

sigma interval from MCNP calculations. The Cf-252 Watt spectrum corresponding to the ENDF/B-VIII.0

database (a = 1.1800, b = 1.03419) yields the best fit to the experimental data and is used throughout

this work. The effect of a harder Watt spectrum (a = 1.025, b = 2.926) is also shown.

Directional Sensitivity

The detection system of the Inspector Bot was designed to provide directional and spectral

sensitivity, the former of which is of principle interest here. In Figure 3, we compare experi-

mental and simulated data as the Inspector Bot is rotated in place. In open space, the shape

of the counts-versus-angle curve produced as the detectors sweep through a rotation closely

resembles that of a cosine wave; the detected counts are highest for the detector directly fac-

ing the source, lowest for a detector located 180° from the forward position, and symmetric

about the forward direction. Due to the cosine-like shape of the counts-versus-angle curve,
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we represent the angular dependence of the detected counts by Eq. 1, which forms a system

of three equations with three unknowns: A, B, and the direction toward the source θ0, where

Si is the detected counts and θi is the relative rotation of the ith detector for i ∈ [1, 2, 3].

Si = A+B cos (θi − θ0) (1)

A single set of measurements consists of the counts detected in each of the three detectors,

so the system of equations can be solved by simple least-squares fitting. We note that A is

approximately equal to the average detected counts per detector and is weakly dependent on

orientation. Furthermore, we choose the bound θ0 ∈ [−60, 60] relative to the detector with

the highest counts, denoted here in degrees; in this manner, this simple model enables the

Inspector Bot to differentiate between sources positioned at any arbitrary angle.

Figure 3: Comparison of experimental and simulated measurements as a function of
detector rotation. For each of the cases shown, the inset schematic in the upper-right shows the

configuration of the robot (R, white) and source (S, black). Left: Detected counts in a single detector as

the robot is rotated in open space. Center: Detected counts in each of the three detectors. The robot is

2 m away from a concrete wall with the source located at 315° (indicated by the black vertical line). Each

curve consists of five measurements; for each measurement, the estimated direction toward the source is

indicated by a gray vertical line. Right: An additional near-wall case where the robot is moved 1 m closer

to the wall with the source stationary, now located at 303.7°. For both near-wall cases, neutrons reflecting

off the wall shift the detected direction.

In addition to the detected counts in open space, Figure 3 also shows two “near-wall” cases

in which the Cf-252 source and the Inspector Bot are located in close proximity to a con-

crete wall. The neutrons reflected by the wall effectively shift the apparent direction to the

source. For each of these cases, the curve consists of five discrete measurements, where each

measurement is itself the detected counts in each of the three detectors. The result of the

cosine model applied to each measurement is shown. This demonstrates that with only three

data points, the cosine model is able to predict the angle which maximizes the counts in the

forward-most detector.9 We also see the effect of the neutron-reflecting concrete wall, in that

the detected direction is approximately 10° to 25° away from the true direction. To correct for

this limitation of the cosine model, we are working toward the next iteration of the Inspector

Bot, which will contain six neutron detectors instead of three. With the added detectors, we
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increase the curve fitting capability to six parameters, and we can unlock higher order terms

in the model. From preliminary investigation, we have evidence which may demonstrate the

ability to compensate for the effect of large neutron reflectors. In addition to potentially im-

proving the directional sensitivity of the Inspector Bot, the six detectors also provide nearly

twice the total count rate, thereby lowering the uncertainty in the total detected counts.

With the current three-detector configuration of the Inspector Bot, we also examine the un-

certainty in the directional estimate. The statistical uncertainty in the detected counts is

propagated to the direction estimate by σθ0 =

√∑3
i=1

(
∂θ0
∂Si

)2
σ2Si . For Poisson distributed

counts, the variance is equal to the counts, σ2Si = Si, and we numerically approximate the par-

tial derivative. Uncertainty propagation was evaluated for varying signal-to-background ratio

and increasing standoff distance and is visualized in Figure 4, where we have conservatively

fit a linear relationship. The result is remarkable: for standoff distances up to 10 m, source

strengths of 106 to 109 n/s, and signal-to-background ratios of 10-4 to 104, the directional

uncertainty in degrees is never more than twice the percent uncertainty in detected counts.

Figure 4: Propagated uncertainty in the Inspector Bot’s directional estimate. A conser-

vatively drawn linear relationship between the directional uncertainty in degrees (y-axis) and the percent

uncertainty in the detected counts relative to background-subtracted counts for varied signal-to-background

(x-axis). As a reference, the orange line is y = 2x, which demonstrates that the directional estimate is

pessimistically twice as uncertain as the detected counts for the range of standoff distances shown.

Particle Filter for Localization

With the cosine model providing a directional estimate and uncertainty propagation providing

the associated directional uncertainty, we are now in a position to address our original goal:
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localizing an unknown neutron source. Several reported methods on localizing a radioactive

source require a priori knowledge of the environment or large sensor networks, which are

very limiting prerequisites for a field-deployable system. Our goal is to design a system which

efficiently uses radiological measurements to inform the search algorithm and requires minimal

a priori information. The simplest case we’ll consider, in terms of motion planning, is scanning

through a gas centrifuge uranium enrichment plant. Such a measurement campaign likely

has a set raster pattern through the rows of centrifuges, where only the measurement time,

spacing, and number of dwell points is variable.10 For verifying the absence of radiation when

no source is detected, we require broad coverage of the search environment. When a source

is present, the robot must detect and converge toward the source. In this sense, in addition

to a classical explore-exploit tradeoff, the problem may also be framed as task-switching,

selecting an appropriate motion and measurement plan based on the observed situation.

Working toward fully autonomous search capabilities, here, we focus primarily on detecting

and converging toward the source.

While the Inspector Bot could directly follow the result of the cosine model, this does not

effectively utilize past information. To incorporate past information along with the measure-

ment uncertainty, we utilize a particle filter. Each “particle” represents a hypothesized source

intensity and location and is assigned a weight according to a cumulative likelihood function.

In the case of particle filtering without re-sampling,11 the posterior bel(xt) = P (x|z) is es-

timated by updating the particle weights, w, according to Eq. 2, with measurements z and

source parameters x.

wt = P (zt|xt)× wt−1 (2)

The particle filtering method described requires a measurement model, P (z|x), in order to as-

sign weights to the particles, where the weight represents the probability of the corresponding

particle, i.e., source hypothesis, yielding the acquired measurements. Assuming independence

of measurements and source parameters, the joint probability of acquiring multiple measure-

ments is given as the joint probability
∏
i P (zi|xi). However, as the measurement uncertainty

decreases or the number of measurements increases, the joint probability may tend toward

zero. To avoid numerical errors, it is advantageous to convert to logarithmic likelihoods. For

the probability mass function (PMF, discrete) or probability density function (PDF, con-

tinuous) given by P (z|x), let f(z|x) be the corresponding logarithmic likelihood function.

In addition to numerical accuracy, the conversion to logarithmic likelihood functions is also

convenient since the logarithm of a product is simply the sum of logarithms. This results in a

great simplification of the distributions, since the logarithmic likelihood of several measure-

ments can simply be added together. Further simplification is also possible when considering

the normalization of the particle weights; any terms in the logarithmic likelihood functions

which depend only on the measurement will be the same for all particles, and can thus be

neglected in calculations since such constant terms will otherwise cancel-out.12

The PMF for the detected gross counts is defined in Eq. 3 as the Poisson distribution for

detecting the counts z given the hypothesized source counts x. As a general characteristic
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of Poisson distributions, the variance and mean are equal to the counts, so σ2z = z. The

corresponding logarithmic likelihood function is given by Eq. 4, which is further simplified,

denoted by the primed function, to neglect terms which depend only on the measurement.

P (z|x) = e−x
xz

z!
(3)

f(z|x) = − ln(z!) + z ln(x)− x =⇒ f ′(z|x) = z ln(x)− x (4)

The PDF for the estimated direction toward the source is defined in Eq. 5 as the von Mises

distribution for detecting the direction z given the hypothesized source location x. In using

the von Mises distribution, we assume that the concentration may be taken as the inverse of

the variance, κ ≈ 1
σ2
z
. This approximation is valid for κ� 0 or, analogously, small σ2z . When

this condition holds, the von Mises distribution may be rewritten, as shown in Eq. 5. Although

the von Mises distribution for small κ more closely resembles a uniform distribution, for the

sake of estimation, we assume the inverse relation between concentration and the standard

flattened dispersion holds. The corresponding logarithmic likelihood function is given by Eq.

6, which is again simplified to neglect terms which depend only on the measurement.

P (z|x, κ) =
eκ cos(z−x)

2πI0(κ)
≈ e

cos(z−x)
σ2z

2πI0

(
1
σ2
z

) (5)

f(z|x) ≈ cos(z − x)

σ2z
− ln

(
2πI0

(
1

σ2z

))
=⇒ f ′(z|x) =

cos(z − x)

σ2z
(6)

For localizing and estimating the strength of an unknown neutron source, we utilize a

prior distribution uniform in space and intensity. The weights of the particles are updated

according to the distributions defined in Eq. 4 and 6. The result of particle filter described

is visualized in Figure 5. In the simulated scenario shown, an unknown neutron source is

located in open space. The Inspector Bot localizes the source over successive iterations,

where each iteration consists of acquiring a new measurement, updating the particle

weights, and moving a fixed step size toward the center-of-mass of the weighted particles.

By leveraging the directional sensitivity of our Inspector Bot, we correctly estimate the

location and intensity of a source with fewer measurements, as compared to particle filtering

based only on gross counts. Our efforts in developing this particle filtering method into

a more robust, deployable algorithm are ongoing. Two major thrusts are more advanced

directional sensitivity with contextual information and motion planning. The former will be

addressed by the six-detector system in conjunction with on-board sensors such as LIDAR.

For the latter, we are considering scenarios with an initially undetectable source in which

the Inspector Bot must begin by following a prescribed path. For instance, the Inspector

Bot may follow a boustrophedonic raster pattern until the measurement uncertainty is

sufficiently low for the particle filter to yield a reliable source estimate.
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Figure 5: Snapshots of the particle filter for localization of an unknown source in a 400 m2

search area. At each iteration, the robot (orange crosshair) takes a new set of measurements (i.e., the

counts in each of the three detectors) and moves one meter toward the estimated source location (orange

solid dot). The true source location is indicated by the orange ring at (10,5). Particles are initially uniformly

distributed in space and intensity. Particles are colored by their respective weights, and the 95% confidence

interval is highlighted in gray. Above: Particles are assigned weights according to the total counts. Below:

Particle weights are computed as a function of both the total counts and the estimated direction. From

left to right, snapshots of the weighted particles are shown for increasing iteration count. Evidently, with

the directional sensitivity of our Inspector Bot, the true source is correctly identified in fewer iterations.

Discussion

Autonomous mobile robots, if designed properly, may be more effective and efficient and

less intrusive than their human counterparts. We believe that our Inspector Bot, with the

detection system comprised of boron-coated straw detectors encased in moderating high-

density polyethylene, has significant potential to find application in nuclear safeguards and

arms-control. Through a series of experimental measurements and MCNP modeling, we have

examined the system performance of our Inspector Bot and characterized the directional sen-

sitivity of the detection system. We also demonstrated how the directional sensitivity can be

leveraged in the context of a particle filter for localizing an unknown neutron source. Future

work on a six-detector version of the Inspector Bot will improve upon the directional sensi-

tivity of the detector system by allowing us to more efficiently acquire data which may reveal
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asymmetry and distortion in the detected counts caused by reflected neutrons. With further

study, it may be possible to more accurately estimate the direction toward a source even

with large nearby neutron reflectors. Further algorithm development and motion planning,

additional experiments, and continued modeling will help achieve our vision of transitioning

our Inspector Bot from a prototype to a deployable, autonomous inspector.
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