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Abstract

Neutron fingerprinting by neutron multiplicity measurement is a proven technique to establish unique
signatures for identification, accountability and control of SNM in nuclear safeguards applications. Com-
putational modeling of neutron multiplicity distributions is a vital complement to experiments but has
traditionally relied on either grossly simplified models (singles, double, and triples) or computationally
demanding Monte Carlo simulation. The ability to accurately and efficiently compute multiplicity dis-
tributions is recognized to be an essential component of the nuclear safeguards toolkit. We present a
hierarchical point-kinetic methodology based on a backward Master equation formulation to numerically
compute accurate time-gated neutron count number probability distributions of arbitrary order and statis-
tical moments of these distributions. For low count numbers, we show that the multiplicity distribution can
be efficiently computed by direct numerical solution of the sequential count probability equations generated
from the backward Master equation. For high count numbers, on the other hand, a generalized Laguerre
polynomial representation with a gamma distribution weight function is shown to accurately reconstruct
the multiplicity distribution, requiring only low order statistical moments as input. For intermediate count
numbers, a maximum entropy reconstruction is found to reproduce the count distribution very accurately
when both moments and low-order discrete count probabilities are incorporated as constraints. Numerical
results are presented for a number of different scenarios and benchmarked for accuracy against a stochas-
tic simulation algorithm (SSA), a system state-updating Monte Carlo method that is more efficient than
single-event Monte Carlo in point geometries.

Introduction

The ability to quickly and accurately characterize unknown material samples is of high importance to
nuclear nonproliferation and international safeguards. Non-destructive assay (NDA) techniques, such as
coincidence counting and Neutron Multiplicity Counting (NMC), are widely used to extract quantita-
tive and qualitative information from neutrons emitted by unknown samples of interest. For instance,
in NMC [1], neutron multiplicity distributions provide unique nuclear signatures for material property
identification where an extended tail in the count number probability distribution is observed that is a
characteristic of and sensitive to the amount of SNM present. Moreover, accurate and efficient methods for
computing neutron multiplicity distributions are complementary to experimental measurements and help
understand the fundamental interactions and transport processes underlying nuclear signatures. Theoreti-
cal modeling approaches that are intermediate between gross-system level models [2] and high-fidelity but
computationally demanding Monte Carlo simulations [3] are of particular interest in this regard. While
low order statistical moments of the multiplicity distribution are relatively inexpensive to compute, and
in conjunction with crude models yield information on sample mass and composition [2], the multiplicity
distribution itself provides a more detailed statistical characterization. However, multiplicity distributions
can be efficiently computed only for relatively small count numbers (∼ tens), with the computational effort
growing nonlinearly with increasing count numbers.
This work provides an overview of an approach for accurately computing multiplicity distributions that
exploits unique features of the distribution. The computational model consists of a dynamic backward
Master equation for a time-gated count number probability distribution and its statistical moments [5].
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Based on the max number of counts, the count distribution is computed by direct numerical solution of
this backward Master equation or reconstructed from statistical moments and low-order discrete count
probabilities. Two reconstruction methods are presented: a generalized Laguerre polynomial representa-
tion, and a maximum entropy method. Numerical results are presented for a number of different scenarios
and benchmarked against an implementation of the Stochastic Simulation Algorithm (SSA) [4], a sys-
tem state-updating Monte Carlo method that is more efficient than single-event Monte Carlo in lumped
geometries.

SSA Monte Carlo

The Stochastic Simulation Algorithm (SSA)[6] is used to simulate the stochastic state of a point kinetic
system and obtain the number of neutron counts within a detector time gate. The stochastic state of the
simulation system is represented by the instantaneous number of neutrons (n) within the assembly and
the number of neutron counts (m) registered by an external nearby detector during a fixed time period,
although the state may be readily expanded to accommodate other stochastic properties of interest, e.g.,
number of photons. The state is evolved over time in response to different types of neutron collisions with
characteristic reaction probability λµ dt in a short time dt, where µ = f (fission), c (capture), and l (leakage).
Let Pn,m(t), n ≥ 0, be the probability that n neutrons exist at time t with m neutrons being detected
up to that time (or in a time interval), S∆t the probability of a spontaneous fission event in a short
time ∆t with multiplicity distribution qν , ν = 0, 1, 2, . . . ν̂s, and pν , ν = 0, 1, 2, . . . ν̂ the induced fission
neutron multiplicity distribution. Given a Markovian system, he SSA algorithm may be constructed from
the following probability balance over all independent and mutually exclusive events:

Pn,m(t+ ∆t) = (1− (S + nλT )∆t)Pn,m(t) + λc∆t(n+ 1)Pn+1,m(t)

+ λl∆t(n+ 1)Pn+1,m−1(t) + S∆t

ν̂S∑
ν=0

[
qνPn−ν,m(t)

]

+ λf∆t

ν̂∑
ν=0

[
pν(n+ 1− ν)Pn+1−ν,m(t)

]
, (1)

given some initial distribution at t = 0.The first term on the right hand side of Eq.(1) expresses the
probability that there is no interaction in ∆t and the neutron does not leak from the system. The remaining
probabilities and event outcomes are described in Table 1.

Table 1: State change probabilities and outcomes

Term # Event Probability/Time State Change

n→ n+ ν
2 Source S qν m→ m

n→ n− 1
3 Capture nλc m→ m

n→ n− 1
4 Leakage nλl m→ m+ 1

n→ n− 1 + ν
5 Fission nλf pν m→ m

The simulation proceeds by sampling a time to the next state updating event, determining a particular
interaction according to the probabilities in Table 1, and updating the state accordingly. The constructed
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algorithm was used to reproduce previously published results [2] as illustrated in Fig.1. Simulating a single
source event from a sample of composition 80 wt% Pu239 and 20 wt% Pu240 for sample masses of 335g,
2680g, and 9047g, the SSA accurately reproduced the resulting neutron count distribution. The point
kinetic data used for the simulation was obtained from a standard adjoint weighted 1D spherical geometry
transport calculations. Considering that the isotope composition did not change across all three samples,
the rates at which fission and capture occurred in the sample were constant and equated to 5.16× 107s−1

and 1.51× 106s−1, respectively. The remainder of the point kinetic data, such as source and leakage rates,
are given in Table 2 below.

Table 2: Point kinetic data

Mass Source Rate Leakage Rate

335g 7.01× 104 5.39× 108

2680g 5.61× 105 2.10× 108

9047g 1.89× 106 1.11× 108

Figure 1: Neutron count distribution

Backward Master Equation

As previously mentioned, the backward Master equation is more appropriate for describing the count
distribution directly. Let Pn(D|s) be the probability that n counts are registered in a finite time interval
D : {tmin, tmax} (e.g., detector time gate) conditional on one neutron existing in the sample at an earlier
time s, i.e., the single chain count distribution. Similarly, let Θn(D|s) be the probability that n counts are
registered conditional on an intrinsic random source of strength S being first turned on at an earlier time
s. Then, it is readily shown using first-step probability balance arguments [7, 8] that both distributions
satisfy backward Master equations in the form

− ∂

∂s
Pn(D|s) = −λTPn(D|s) + λcδn,0 + λl[δn,1ID(s) + δn,0ID(s)] + λf

ν̂∑
ν=0

pν
∑
|~nν |=n

ν∏
j=1

Pnj (D|s), (2)

− ∂

∂s
Θn(D|s) = −SΘn(D|s) + S

ν̂S∑
ν=0

qν
∑

|~nν |+|~mν |=n

ν∏
j=1

Pnj (D|s),Θmj (D|s), (3)

with final conditions Pn(D|tmax) = δn,0 and Θn(D|tmax) = δn,0, and defining |~nν | = n1 + n2 + . . .+ nν and
similarly |~mν |. In Eqs. (2) and (3), ID(s) is the indicator function, defined to be unity for s ∈ D and zero
otherwise, and ID(s) its complement. This closed set of differential equations can be solved recursively
for the count probability distribution and statistical moments increasing count numbers. To this end, it
is convenient to express Eqs (2) and (3) in terms of the probability generating functions defined by the
discrete transformation:

G(z;D|s) =
∞∑
n=0

znPn(D|s), H(z;D|s) =

∞∑
n=0

znΘn(D|s), (4)
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where z is the transform variable restricted to the range 0 ≤ z ≤ 1 to ensure convergence of the summations.
Applying this discrete transform to Eqs.(2) and (3) gives

− ∂

∂s
G(z;D|s) = −λTG(z;D|s) + λc + λl[zID(s) + ID(s)] + λf

ν̂∑
ν=0

pνG
ν(z;D|s), (5)

− ∂

∂s
H(z;D|s) = −SH(z;D|s) + S

[ ν̂S∑
ν=0

qνG
ν(z;D|s)H(z;D|s)

]
, (6)

with final conditions G(z;D|t) = 1 and Hn(z;D|t) = 1.

Count Probability Equations

Equations for discrete count probabilities are readily obtained from the BME noting the relationships

Pk =
1

k!

∂k

∂zk
G(z;D|s)

∣∣∣∣
z=0

, Θk =
1

k!

∂k

∂zk
H(z;D|s)

∣∣∣∣
z=0

, (7)

where G(z;D|s) and H(z;D|s) are the generating function equations for Pn(D|s) and Θn(D|s), respectively.
Differentiating Eqs. (5) and (6) to the appropriate order yields the count probability equations:

− ∂

∂s
Pk(D|s) = −λTPk +

1

k!

[
λlID(s)δk,1 +

(
λc + λlID̄(s)

)
δk,0 + λf

ν̂∑
ν=0

pνI
ν
k

]
(8)

− ∂

∂s
Θk(D|s) = −SΘk +

1

k!
S

ν̂S∑
ν=0

pνJ
ν
k . (9)

where the derivative terms associated with the branching process have been represented as

Iνk =
∂k

∂zk
Gν(z;D|s)

∣∣∣
z=0

, Jνk =
∂k

∂zk
[
Gν(z;D|s)H(z;D|s)

]∣∣∣
z=0

(10)

To proceed further, it becomes necessary to derive some representation of the branching terms Iνk and Jνk .
Noting patterns that become evident from lower order terms, the following recursive relationship can be
derived

Iνk =


P ν0 , k = 0

ν
k−1∑
j=0

(
k − 1
j

)
Iν−1
j (k − j)!Pk−j , k ≥ 1

(11)

Jνk =
k∑
j=0

(
k
j

)
Iνj (k − j)!Θk−j , k ≥ 0 (12)

It is noted that the equation for P0, the probability of observing no counts, is standalone but nonlinear
while the equations for Pn, n ≥ 1, are linear but fully coupled. Nevertheless, both terms, Iνk and Jνk , were
numerically evaluated by writing a recursive lambda function in C++. In principle, this algorithm enables
the branching terms in the count probability equations to be obtained explicitly up to an arbitrary order.
In practice, the number of such terms grows explosively as the count order k increases and the resulting
expression-swell creates a numerical challenge when k is larger than a few tens. The count probability
equations were solved sequentially using an adaptive Runge-Kutta scheme and backwards integration from
the later edge of the time gate to an initial time. For illustration, a sample of composition 80 wt% 239Pu
and 20 wt% 240Pu with a mass of 335g is considered. Fig. 2 compares the distribution generated over a
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Figure 2: BME exact neutron count distribution
compared against SSA Monte Carlo

Table 3: BME Direct Solve Computation Times

n CPU Times (s)

0 0.015
5 0.46
10 10.1
11 19.3
12 33.4
13 60.3
14 96.2
15 157.6

SSA 36

17µs time gate computed by solving Eqs. (8) and (9) numerically against an SSA Monte Carlo simulation.
The relative standard deviation is less than 1% for the low count numbers (3 - 4 counts) and increases
to a maximum of 5% in the tail of the distribution (14 - 15 counts). The time required to solve each
set of equations is also represented in Table 3 illustrating the rate at which the computation time scales
with increasing k. When the number of counts is large, it is clear that such methods are less efficient
than monte carlo approaches. For such scenarios, methods based on a knowledge of low order statistical
moments, which are easily solved, prove more efficient if not as accurate, as is shown next.

Reconstruction Methods

Despite the direct numerical solution of Eqs. (2) and (3) being quite efficient for low count numbers, solving
for the individual count number probability equations becomes tedious for large count numbers. This trend
is also observed when solving for the statistical moments of the distribution which, by definition, contain
information about the entire distribution. Considering that more information is contained in the first few
moments as opposed to the first few counts of the probability distribution, it is natural to inquire if the
distribution can be reconstructed from a finite, preferably small, number of moments. Statistical moments
of the distribution function, from which gross sample properties can be extracted [2], are readily obtained
from the BME and easily computed. Multiplicity moments Mk of the count distribution may be obtained
directly from the generating function by taking derivatives of Eq. 4, giving

Mk(D|s) = n(n− 1) . . . (n− k + 1) =
1

k!

∂G(z : D|s)
∂zk

∣∣∣
z=1

. (13)

Similarly, multiplicity moments when a source is present are given by

MS
k (D|s) = n(n− 1) . . . (n− k + 1) =

1

k!

∂H(z : D|s)
∂zk

∣∣∣
z=1

(14)

Specifically, when k = 1 the equations above give the mean number of counts while k = 2 gives the second
factorial moment n(n− 1) from which the variance can be calculated. Taking the kth-order derivative of
Eqs.5 and 6 gives the moment equations

− ∂

∂s
Mk(t|s) = −λTMk(t|s) + λlID(s)δk,1 + λf

ν̂∑
ν=0

pν
∂k

∂zk
Gν(z; t|s)

∣∣∣∣
z=1

(15)
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− ∂

∂s
MS
k (t|s) = −SMS

k (t|s) + S

ν̂S∑
ν=0

qν
∂k

∂zk

[
Gν(z; t|s)H(z; t|s)

]∣∣∣∣
z=1

(16)

Similar to the terms associated with the branching process in Eqs. (8) and (9), the inhomogeneous or
source terms depend only on the previous moments. This facilitated the ability to solve these equations
sequentially by backward integration in time to obtain the count multiplicity moments of desired order.
From that, two methods were considered for the reconstruction of probability distributions which are
discussed within this section.

Maximum Entropy Method

The first method is the maximum entropy method. A widely used technique for reconstructing a probability
distribution from a knowledge of a finite number of moments of the distribution [9]. The information or
Shannon entropy is defined by the discrete functional

S[Pn] = −
∞∑
n=0

Pn ln(Pn), (17)

which when maximized after incorporating the moments as constraints using Lagrange multipliers pro-
vides the least biased distribution for the given information. The procedure yields a nonlinear system
of equations for the Lagrange multipliers which can be solved using an iterative method such as New-
ton [10]. Incorporating the first K moments of the true distribution as constraints, the following functional
is obtained for the reconstructed distribution P̃n

P̃n = S[P̃n]−
K∑
k=0

[
λk

( ∞∑
n=0

(n
n̄
− 1
)k
P̃n − µk

)]
; µk =

∞∑
n=0

(n
n̄
− 1
)k
Pn (18)

where µk are the normalized central moments of the true distribution Pn and λk are the Lagrange multi-
pliers. It is noted that in our application we found that using normalized central moments as opposed to
raw moments significantly improved the numerical convergence of the Newton iteration. The functional
above, when maximized, yields the equation for the approximated distribution

P̃n = exp

(
− 1 +

K∑
k=1

−λk
(n
n̄
− 1
)k )

(19)

Figs. 3a and 3b illustrate the reconstruction of the distribution using this method for sample masses of
335g and 2680g at 84 µs (negligible zero-count probability) and 6 µs (significant zero-count probability)
time gates, respectively. The SSA relative standard deviation ranges from less than 2% around the peak of
both distributions to 15% in the tails. The reconstruction appears to accurately reproduce the probability
distribution for cases when the number of counts is intermediate and the probability of zero counts is
negligible (Fig. 3a). When the probability of zero counts is significant, the maximum entropy method
captures the tail of the distribution, but fails to reproduce the observed nonmonotonic structure of the
distribution (Fig. 3b). However, the nonmonotonicity occurs at the low counts which can be easily
obtained as shown in the previous section. This gave rise to the idea of incorporating the true low order
count probabilities as discrete constraints. In order to additionally incorporate the n∗ discrete constraints,
we express

∞∑
n=0

(n
n̄
− 1
)k
P̃n − µk =

n?∑
n=0

(n
n̄
− 1
)k
Pn +

∞∑
n=n?+1

(n
n̄
− 1
)k
P̃n − µk

where Pn are the exact count probabilities obtained by solving Eqs.(8) and (9) up to order n?. Furthermore,

we define the modified constraints α
(n?)
k as

α
(n?)
k = µk −

n?∑
n=0

(n
n̄
− 1
)k
Pn (20)
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(a) 335g sample source (b) 2680g sample source

Figure 3: Maximum entropy reconstructed neutron count distribution

which, when inserted in the modified functional and the latter maximized, finally gives the approximated
distribution:

P̃n =


Pn, 0 ≤ n ≤ n?

exp

(
− 1 +

K∑
k=1

−λk
(n
n̄
− 1
)k )

, n > n?
(21)

For the case illustrated in Fig. 3a, although preserving five moments yields sufficient accuracy, the recon-
struction accuracy is significantly enhanced when the distribution is additionally constrained with as little
as the first six discrete count probabilities, P0 − P5. As for the case when the probability of observing
zero counts is significant, incorporating the true low order count probabilities as discrete constraints had
a major impact. Significant improvement was obtained with just five discrete count probabilities, but the
distribution reconstructed with ten is practically indistinguishable from the SSA distribution. Figs. 4a and
4b illustrate the reconstruction of the distribution in Figs. 3a and 3b accounting for both moments and
discrete count probabilities as constraints. As for the difference in computation time between the maximum

(a) 335g sample source (b) 2680g sample source

Figure 4: Maximum entropy reconstructed neutron count distribution

entropy reconstruction method and SSA MC, the moment only reconstruction illustrated in Fig. 4b took
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0.02s compared to the 151s of SSA. Incorporating the first six, P0−P5, and first eleven, P0−P11, discrete
count probabilities took 0.11s and 1.87s, respectively.

Orthogonal Polynomial Expansion Method

The second method considered was an Orthogonal Polynomial Expansion method. Orthogonal polynomial
representations, whose associated weight functions are representative of the desired probability distribution,
can yield highly accurate reconstructions of the distribution by enforcing preservation of a finite number of
moments. For instance, knowledge of the first two moments (mean and variance) is sufficient to characterize
a Gaussian distribution but this is only accurate when the mean number of counts is large and the variance
small, a regime that is outside the domain of typical safeguards applications. However, the two-parameter
gamma distribution was has been previously demonstrated to be effective in describing neutron number
distributions from strongly stochastic to strongly deterministic regimes [11, 12] when the two parameters
are chosen to preserve the exact mean and variance of the distribution. When applied to the count numbers,
this yields:

P (G)(n;D|s) =

(
η

n̄

)η nη−1

Γ(η)
exp

(
− nη

n̄

)
; η(s) =

n̄2(s)

σ2(s)
, (22)

which is a good approximation when large count numbers dominate the distribution. Improved accuracy
more broadly is achieved by expressing the count distribution as an expansion in terms of generalized
Laguerre polynomials Lrk(x) which are orthogonal with a gamma distribution weight function. Thus,
writing

P (n;D|s) ≈ P (G)(n;D|s)

{
1 +

K∑
k=3

akL
η−1
k

(ηn
n

)}
, (23)

the expansion coefficients ak are obtained by requiring the distribution to yield exact moments up to
order K. Note, the first two moments are automatically preserved by the gamma distribution. The
distributions reconstructed from the gamma and Laguerre expansion distributions are shown in Figs.(5a)
and (5b) for sample masses of 335g and 2680g of the same Pu composition with 84 µs and 19 µs time
gates, respectively. The results show that a generalized Laguerre distribution is capable of producing an
accurate reconstruction of the count distribution, with fewer moments required as the number of counts
increases. The SSA standard deviation ranges from less than 2% for low count numbers about the peak
of the distribution to 15% for the low probability high count events at the tail. The reconstruction

(a) 335g sample source (b) 2680g sample source

Figure 5: Reconstructed neutron count distribution using a generalized Laguerre expansion

8



method mentioned here also showed drastic improvement in computation time as compared to SSA MC.
For example, the time required to produce the probability distribution in Fig. 5b took a total of 456s
using the SSA while the reconstruction using the orthogonal polynomial expansion took a mere 0.002s.
Moreover, the efficacy of the reconstruction becomes apparent for larger time gates when the variance-to-
mean ratio of counts is not large (η > 1). This is illustrated in Fig. 6a for a 9047g sample of the same
Pu composition at four, increasing time gates. Under these circumstances, the gamma distribution alone
accurately captures the count distribution. However, for increasing variance-to-mean such that η < 1, the
underlying gamma distribution becomes monotonically decreasing and hence is not representative for very
small count numbers. This is true in particular when P0, the probability of zero counts, is not small. For
such scenarios, methods such as the maximum entropy reconstruction proved to be more efficient.

(a) 9047g sample source (b) 2680g sample source

Figure 6: Reconstructed neutron count distribution using a generalized Laguerre expansion

The results show that the Gamma pdf captures the tail of the count distributions very well but additionally
preserving the third and fourth moments improves the accuracy closer to the mode. For η < 1 the Gamma
distribution is monotonically decreasing and hence is not representative for very small count numbers. The
results suggest that when the mean and variance yield η < 1 the pdf should be computed exactly from
Eqs. (2) and (3) for low count numbers while the four moment Laguerre-reconstructed pdf can adequately
represent the tails. For η > 1, on the other hand, the Laguerre-reconstructed pdf captures the entire pdf
with accuracy increasing with increasing number of moments preserved.

Conclusions

Implementation of the Stochastic Simulation Algorithm was demonstrated to be a versatile, memory and
performance efficient alternative to single-event Monte Carlo method for neutron multiplicity simulations
in point kinetic geometry. In addition, a methodology for direct computation and moment-based recon-
struction of SNM neutron multiplicity distributions has been demonstrated where the SSA was used to
benchmark count probability distributions produced. Extensive numerical testing showed that direct nu-
merical solution of the backward Master equation is practical and efficient for computing the multiplicity
distribution when the count numbers are small (∼tens); for intermediate count numbers, a maximum
entropy method constrained by independently and inexpensively computed low order moments and low
order discrete count probabilities is also efficient and yields highly accurate reconstructions; for large
count numbers, a truncated generalized Laguerre distribution constrained to produce a fixed number of
exact moments also yields highly accurate representations of the multiplicity distribution, with the gamma
distribution itself sufficing for very large counts. Although demonstrated here for a lumped model, the
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multiplicity reconstruction approach is immediately extensible to the unlumped case where neutron phase
information (position, direction, energy) is retained and where computational advantages over Monte Carlo
simulation are expected to be greater still.
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