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Abstract

At the last two INMM conferences, the theory of and results from a general transport
theory calculation of the factorial moments of the number of neutrons emitted sponta-
neously from a sample were presented. In contrast to the original derivations, made in the
so-called point model, in the transport model the spatial and angular dependence of the
internal fission chain is taken into account with a one-speed transport theory treatment.
Quantitative results were given for a spherical item, and the bias of the point model what
regards the estimation of the fission rate, as compared to the more exact space-dependent
model, was estimated as a function of the size of the sphere and the alpha factor. In the
present work the formalism, as well as the quantitative work, is extended to the treatment
of items with cylindrical shapes, which are more relevant in many practical applications.
Results are presented for both “square” (H = D), as well as for flat and tall cylinders.
This way the differences between the cylinder and the sphere on one hand, and that
between the various cylinder shapes can be estimated. The results show that the bias
depends on the geometry of the item, and similarly to the case of the sphere, the bias of
the point model is quite significant for larger item sizes and alpha values, as well as it is
non-conservative (underestimates the fissile mass).

1 INTRODUCTION

In a couple of recent publications [1, 2, 3], we have introduced a theoretical framework for the
calculation of the multiplicity moments (often referred to as the Böhnel moments), in which,
unlike the usual point model derivations [4, 5], the spatial transport was taken into account in
a one-speed transport theory model. A one-speed master transport equation was set up for the
probability distribution of the number of neutrons leaving the sample, from which the factorial
moments can be calculated. Concrete forms of the moment equations were given for a spherical
item, and these were solved numerically by a collision number (Neumann-series) type iterative
scheme.

The purpose of the present paper is to extend the quantitative work to the calculation of the
moments for an item with cylindrical shape. This is motivated by the fact that the cylindrical
shape is more realistic in practical cases. On the computational side, the cylindrical geometry
obeys fewer symmetry properties, hence the formalism includes more variables an requires more
computational effort. In addition, cylinders can have a differentH/D ratio (aspect ratio), hence,
the difference between the different cylindrical geometries can also be investigated.

2 GENERAL PRINCIPLES

In our previous work [1, 2, 3] a backward-type transport master equation was derived for the
scalar generating function

g(z| r) =
∞∑
n=0

zn p(n| r) (1)
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of the number distribution p(n| r) of neutrons emitted from the sample after a chain initiated by
one single starting neutron in position r with an isotropic angular distribution. The equation
reads as

g(z| r) = z g0(z| r) +
1

4π

∫
4π

dΩ

∫ `(r,Ω)

0

ds e−s qr [g(z| r′)] (2)

where

g0(z| r) =
1

4π

∫
4π

dΩ e−`(r,Ω), (3)

r′(s) ≡ r + sΩ, `(r,Ω) is the distance to the boundary of the item from point r along the
direction Ω in units of the mean free path, and qr(z) is the generating function of the number
distribution of neutrons in induced fission in the sample, the quantity in the square brackets
being its argument. It is assumed that the only reaction the neutrons undergo is fission.

In a similar way, the expression for the generating function G(z) of the source event induced
distribution reads as

G(z) =
1

V

∫
V

dr qs [ g(z| r)] . (4)

where qs(z) is the generating function ps(n) of the number distribution of the neutrons born in
spontaneous fission or in an (α, n) reaction. Hence ps(n) is a weighted average of the distribution
psf (n) of the neutrons emitted in spontaneous fission and the pα = δ1,n of the (α, n) neutrons,
the weighting factor being expressed in terms of the so-called α ratio α = Qα/F νsf,1, where
Qα is the intensity of (α, n) reactions, F is the intensity of the spontaneous fission events, and
νsf,1 is the expectation of the number of neutrons from spontaneous fission.

In an application, the detection rates of the singles, doubles and triples are used, which
are simply and directly related to the first three factorial moments of the source event induced
emissions. Equations for these factorial moments can be obtained by differentiating (2) and (4)
with respect to z, solving the arising integral equations for the moments of the single neutron
induced distributions from (2), and integrating them in the expressions obtained from (4).

The equations above are quite general and applicable to any geometry. The choice of the
geometry of the item will affect the functional form of `(r,Ω) as a function of its arguments,
as well as the symmetry properties, as well as (through the possible symmetries of the arrange-
ment) the number of spatial and angular co-ordinates for which the integrations need to be
performed. For the case of the sphere, the spatial coordinates only included the radial position,
and the angular dependence was described by the cosine of the polar angle of the neutron
direction vector enclosed with the position vector. For the case of the cylinder, the situation is
more involved, as will be described below.

3 EQUATIONS FOR CYLINDRICAL GEOMETRY

Let the radius of the cylinder be R and its height H, measured in units of the mean free path.
In cylindrical coordinates, the position of the neutron is defined by r = {r, h}, and its velocity
direction by Ω = {µ, ϕ}, where µ = cosϑ, ϑ being the polar angle. Due to the azimuthal
symmetry, all quantities, such as the generating functions g(z| r,Ω) and g(z| r) as well as its
factorial moments, will not depend on the azimuthal coordinate of the position vector. Hence,
all quantities will only depend on the four variables {r, h, µ, ϕ}.

Without going into details of the derivation (for the details we refer to Ref. [6]), the distance
`(r, h, µ, ϕ) from a point to the boundary of the cylinder in a given direction is found as the
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maximum value of s with which both conditions

r′(s) =

√
r2 + s2 (1− µ2) + 2 r s

√
1− µ2 cosϕ ≤ R (5)

and
0 ≤ h′(s) = h+ s µ ≤ H (6)

are fulfilled. As soon as any of the above two inequalities is violated, it means that the path
crossed either the side, or the top/bottom of the cylinder.

The equation for the scalar generating function g(z | r, h) of the single neutron induced
distribution reads as

g(z | r, h) = z g0(z | r, h) +
1

4π

∫ 1

−1
dµ

∫ 2π

0

dϕ

∫ `(r,h,µ, ϕ)

0

ds e−s qr[g(z | r′(s), h′(s)] (7)

with

g0(z | r, h) =
1

4π

∫ 1

−1
dµ

∫ 2π

0

dϕ e−`(r,h,µ, ϕ). (8)

The equation for the generating function of the source event induced distribution is given as

G(z) =
2

R2H

∫ R

0

r dr

∫ H

0

dh qs[g(z | r, h)]. (9)

The equations for the moments can be derived by taking the derivatives of the generating
functions g0(z | r, h) and G(z) of Eqs (7) and (9) at z = 1, respectively. For consistency, the
same notational conventions will be used for the various moments as in our previous work,
that is the first, second and third factorial moments of the single neutron induced distribution
will be denoted as n(r, h), m(r, h) and w(r, h), respectively. Likewise, the first three factorial
moments of the source event induced distribution will be denoted as N , M and W . With these
notations, the following equations are obtained for the moments.
First moments
Single neutron induced expectation:

n(r, h) = n0(r, h) +
νr,1
4π

∫ 1

−1
dµ

∫ 2π

0

dϕ

∫ `(r,h,µ, ϕ)

0

ds e−s n(r′(s), h′(s)); (10)

with

n0(r, h) =
1

4π

∫ 1

−1
dµ

∫ 2π

0

dϕ e−`(r,h,µ, ϕ); (11)

Source event induced expectation:

N =
2 νs,1
R2H

∫ R

0

r dr

∫ H

0

dhn(r, h) (12)

Second moments

m(r, h) = A(r, h) +
νr,1
4π

∫ 1

−1
dµ

∫ 2π

0

dϕ

∫ `(r,h,µ, ϕ)

0

ds e−sm(r′(s), h′(s)) (13)
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with

A(r, h) =
νr,2
4π

∫ 1

−1
dµ

∫ 2π

0

dϕ

∫ `(r,h,µ, ϕ)

0

ds e−s n2(r′(s), h′(s)) (14)

and

M =
2

R2H

∫ R

0

r dr

∫ H

0

dh
{
νs,2 n

2(r, h) + νs,1m(r, h)
}

(15)

Third moments

w(r, h) = B(r, h) +
νr,1
4π

∫ 1

−1
dµ

∫ 2π

0

dϕ

∫ `(r,h,µ, ϕ)

0

ds e−sw(r′(s), h′(s)) (16)

with

B(r, h) =
1

4π

∫ 1

−1
dµ

∫ 2π

0

dϕ

∫ `(r,h,µ, ϕ)

0

ds e−s
{
νr,3 n

3(r′(s), h′s))+

3 νr,2 n(r′(s), h′(s))m(r′(s), h′(s))}

(17)

and

W =
2

R2H

∫ R

0

r dr

∫ H

0

dh
{
νs,3 n

3(r, h) + 3 νs,2 n(r, h)m(r, h) + νs,1w(r, h)
}
. (18)

Similarly to our previous work, the above equations were solved numerically with the use
of a collision number expansion method. Quantitative results will be presented below.

4 QUANTITATIVE ANALYSIS AND COMPARISON WITH THE POINT MODEL

For the quantitative calculation of the moments from Eqs. (10) - (18) and to compare them
with the point model, two types of data are needed. For the former, the choice of the material
composition of the item and corresponding factorial moments of the spontaneous and induced
fission are needed. The same data will be used as in our previous work, assuming a sample
of 20 wt% 240Pu and 80 wt% 239Pu, with corresponding data taken from Ref. [7]. Also, the
same two cases α = 0 and α = 0.5 will be considered. The factorial moments of the source and
induced fission neutron numbers for the two α values are shown in Table 1.

Table 1: Input parameters used in the calculations.

First moments Second moments Third moments

Spontaneous fission νsf,1 = 2.1538 νsf,2 = 3.7912 νsf,3 = 5.2146

Source event with α = 0.5 νs,1 = 1.5554 νs,2 = 1.8254 νs,3 = 2.5108

Induced fission νr,1 = 3.135 νr,2 = 8.1162 νr,3 = 17.0028

For the comparison with the point model, the first collision probability p is needed for each
particular cylinder geometry. This quantity is a simplification of the point model, and it does
not occur in the space-dependent calculations. However, for a fair comparison, the first collision
probability used in the point model calculations must correspond to the transport model used in
the space-dependent calculations. The simplest way of calculating this quantity for the cylinder
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is as follows. One notes that the average escape probability pesc of neutrons for the case of a
homogeneously distributed isotropic source is equal to

pesc =
1

V

∫
V

dr n0(r) (19)

where n0(r) is shorthand for the uncollided term, Eq. (11). Hence, the first collision probability
p is equal to

p = 1−pesc = 1− 1

V

∫
V

dr n0(r) = 1− 1

2πR2H

∫ R

0

r dr

∫ H

0

dh

∫ 1

−1
dµ

∫ 2π

0

dϕ e−`(r,h,µ, ϕ) (20)

This formula was used to calculate the first collision probability for each case.
Unlike spheres, cylinders can have various shapes corresponding to different aspect ratios

H/D. In the quantitative work, 3 different shapes were used:
- a “square” cylinder, H = D
- a “long” cylinder, H/D = 2.5
- a “flat” cylinder, H/D = 0.2.

For each shape, the dependence of the first three factorial moments of the source event induced
number distribution will be shown. However, since the same radii for the three shapes would
correspond to different masses (volumes), in order for a correct comparison of the results, these
will be plotted as function of a so-called “effective radius”, Reff . This latter is defined as
the radius of an equivalent square cylinder with the same volume as the actual long and flat
cylinders, respectively. In formula, one has

Reff = R

(
H

D

) 1
3

(21)

where R is the actual radius of the cylinder, and H/D is the fixed aspect ratio of the particular
shape.

The dependence of the first three factorial moments on the effective radius Reff (in optical
units) of the cylinders with the three selected shapes is shown in Figs. 1 - 3 for both the point
model and the space dependent model, for the cases α = 0 (left figures) and α = 0.5 (right
figures). The tendencies are very similar to those observed for the sphere. For very small values
of Reff , the point model and space-dependent model values are both equal to the mean values
of source emission particles for both values of α. As Table 1 shows, this value is smaller for the
case α = 0.5, and hence the values of the first moment remain systematically lower than those
for α = 0 for all values of Reff .

With increasing radius, the values of the moments start to increase for both the point model
and the space dependent model. Similarly to the case of the sphere, the moments by the space
dependent model increase faster than those by the point model. The difference increases with
increasing effective radius. The rate of the rise is different for the different shapes. For both
the long and the flat cylinder, at the same effective radius, the moment values are lower than
those of the square cylinder, the values from the long cylinder being larger than those of the flat
cylinder. This because for a given effective radius the first collision probability is the largest
for the square cylinder, and the smallest for the flat cylinder.

One can also note that as the order of the moments increases, both the quantitative values
of the moments, as well as the difference between the point model and the space dependent
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Figure 1: Mean value of emitted particles as function of cylinder effective radius for the cases α = 0
(left) and α = 0.5 (right). Upper figures: square cylinder; middle figures: long cylinder; bottom
figures: flat cylinder.

model increases. For instance, for the third moment at Reff = 0.3, for the square cylinder, the
difference between the space dependent model and the point model exceeds 50% considerably.

The reason for the space dependent model predicting higher values for all the moments
was analysed for the sphere in [3], and the same is valid for the cylinder. Namely, the space
dependent model predicts a larger internal multiplication, and hence also a larger leakage
multiplication than the point model.
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Figure 2: Second moment of emitted particles as function of cylinder effective radius for α = 0 (left)
and α = 0.5 (right). Upper figures: square cylinder; middle figures: long cylinder; bottom figures: flat
cylinder.

5 THE BIAS OF THE POINT MODEL

Since the results of both the space dependent and the point model calculation are quantitatively
available, this lends a possibility to put the deviation between the two into perspective, since
the space-dependent transport calculations can be expected to yield more accurate results than
the point model. Hence, one can check what type of error is committed when, in evaluating a
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Figure 3: Third moment of emitted particles as function of cylinder effective radius for α = 0 (left)
and α = 0.5 (right). Upper figures: square cylinder; middle figures: long cylinder; bottom figures: flat
cylinder.

measurement, one uses the point model equations and the unfolding method based on them,
whereas the factorial moments used in this process correspond to those given by the spade-
dependent model. This is quantified by the so-called bias, which is the ratio of the results
for the fission rate as derived by assuming the point model, to the correct fission rate. The
procedure is quite straightforward, and is described in [3], hence it will not be described here.

For the quantification of the bias, we will compare not only the cylinders of various shapes,
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but also we will make a comparison with the sphere. Such a comparison is shown in Fig. 4,
displaying the bias of the point model for the case of a sphere, and the three different cylinder
shapes, for both α = 0 and α = 0.5. The bias is shown as function of the effective radius of
the items. For a correct comparison between cylinders and spheres, the effective radius for a
cylinder is defined as the radius of a sphere with the same volume, i.e. the effective radius is
not the same as Eq. (21), used in Figs. 1 - 3, rather in this case it is equal to

Reff =

(
3H

2D

) 1
3

R. (22)

It is seen from Fig. 4 that the bias is quite moderate for α = 0 for all four geometries, even
at quite large effective radii, but it becomes substantially larger for α = 0.5. For Reff = 0.4,
the bias of the point model is over 30% for the sphere and for the square cylinder. It is also
seen that the bias of the point model for a spherical item is very close to that of a square
cylinder. This means that for the case of a square cylinder, it causes only a small error if the
point model results are corrected assuming that it had a spherical shape. The results in Fig.
4 show that applying the same correction procedure would yield a much larger error (incorrect
compensation of the bias of the point model) if the item was a long or a flat cylinder. On the
other hand, if no correction of the bias of the point model is made, then the error in determining
the fissile mass will be smaller for a flat or a long cylinder, than when the item had a spherical
shape or that of a square cylinder.

Figure 4: Bias of point model as function of the effective radius Reff for α = 0 (left figure) and α = 0.5
(right figure), respectively.

6 CONCLUSIONS

An earlier work concerning the calculation of the multiplicity moments from a sample containing
fissionable and fissile material with one-speed transport theory for a spherical item was extended
to cylinders, making it possible to replace the point model equations with one-speed transport
calculations for various geometries, which are supposed to give more accurate results. These
more realistic results can be used to improve the results of the point model in estimating the
fissile mass of a sample, e.g. by generating training sets for machine learning methods which
have to replace the analytical inversion process of the point model, since the results of the
space dependent model are not analytical. Work is going on in this direction and results will
be reported in later publications.
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to include space- and angular de-pendence,” in Proc. INMM-60 Annual Meeting, (paper
a167, Palm Desert, CA), 14 - 18 July 2019.

[2] I. Pázsit and L. Pál, “Developments in the Calculation of the Multiplicity Moments in
Space-Dependent (Non-Point) Models,” in Proc. INMM-61 Annual Meeting, (paper a1278,
Baltimore, USA), 14 - 18 July 2020.

[3] I. Pázsit and L. Pál, “Multiplicity theory beyond the point model,” Annals of Nuclear
Energy, vol. 154, p. 108119, 2021.

[4] W. Hage and D. M. Cifarelli, “On the factorial moments of the neutron multiplicity distribu-
tion of fission cascades,” Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 236, no. 1, pp. 165–
177, 1985.
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