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ABSTRACT
Antineutrino detectors have potential for use as independent, tamper-proof tools for reactor
monitoring using the antineutrino flux from reactor cores. The antineutrino count rate needed for
reasonable verification relies heavily on the strength of the statistical inference. In this work, we test
the statistical limitations of a simulated Advanced Fast Reactor-100 (AFR-100) antineutrino-based
safeguards system to detect special nuclear material being removed from the reactor core. After
simulating 12 different diversion scenarios, expected antineutrino spectra along with the
corresponding variances were created for 3-month collection periods. Support vector machine
models were then applied to these spectra for diversion analysis. The diversion predicting powers, or
safeguards powers, were inaccurate on a case-by-case basis. However, by generating a large enough
sample size, the models converged to a robust, high bias, lower limit safeguards power that would
have previously been considered zero using statistical analysis methods.

INTRODUCTION
While the International Atomic Energy Agency (IAEA) has many methods for safeguarding nuclear
reactors, remote monitoring techniques are effective for reducing inspection efforts and maximizing
equipment utility [1]. Antineutrino detection systems could provide remote monitoring capabilities
based on a continuous and isolated stream of antineutrino data. The measured antineutrino flux
should then reflect simulated reactors with an identical isotopic core composition. If special nuclear
material (SNM) was removed from the core, however, the spectra would not match the simulated
data. This system of verification is referred to as the Reactor Evaluation Through Inspection of
Near-field Antineutrinos (RETINA) system. Similar to how a retinal scan compares unique blood
vessels within an eye to a stored copy, the RETINA system collects an antineutrino spectrum and
relates that spectrum to a stored copy from a simulated database [2].

The proposed RETINA system for this study was designed to safeguard the Advanced Fast Reactor
(AFR)-100 reactor design. The AFR-100 is a small, fast reactor with a power rating of 250MWth [3].
Compared to a previous RETINA study involving the Ultra-long-life Core Fast Reactor
(UCFR)-1000, the AFR-100 has a much lower antineutrino source strength. The smaller core
volume of the AFR-100 allows the detection system to be closer to the core (17m) compared to the
distance for the UCFR-1000 (25m) [4].

ANTINEUTRINO SPECTRA GENERATION
In this work, we applied a simulated RETINA system to the AFR-100 design. Using the method
outlined in Stewart et al [4], REBUS-3 [5] software was used for general neutronic computation with
MC2-3 [6] periodically updating the effective microscopic cross sections. After the reactor design
was simulated under regular operating conditions, three diversion scenarios locations were selected
(Figure 1) based on attractive locations and burnup steps in which a total of one significant quantity
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(SQ) of plutonium (8kg) was reasonably accessible. The diversion scenario simulations also
involved replacing the removed plutonium with an alternate fuel. The replacement fuels were either
natural uranium or low-enriched uranium. The final diversion scenario modification was power
manipulation. Since removing special nuclear material would alter the number of antineutrinos
collected, a reactor operator could adjust the power of the reactor and burn more or less of the fuel to
near-match the expected spectrum. For this study, the scenarios are labeled based on location (1,2,3),
fuel replacement (“a” for natural uranium and “b” for low-enriched uranium), and power
manipulation (“nominal” for no power alteration, “manipulated” for optimal power alteration).

Figure 1: Diverted locations (red) for scenarios 1 (left), 2 (middle), and 3 (right). Figures from Stewart
[7].

These scenarios were simulated to determined isotopic fission rates. Based on the
antineutrino-fission yield libraries, provided by [8], these isotopic fission rates were translated into
antineutrino yields. From these antineutrino spectra, the expected detector event rates were
calculated with characteristics matching the AD-1 detector used for the PROSPECT program [9].

STATISTICAL ANALYSIS
After calculating the final antineutrino counts and energies for each scenario, a chi-square goodness
of fit test was applied to quantify the diversion scenario deviation from the normal core data.
Mathematically, the chi-square test summed the relative deviation for every antineutrino energy bin.
As previously described, however, a reactor operator can minimize this deviation with power
manipulation. Since greatly increasing or decreasing the power of a reactor also increases the chance
of setting off a red flag for the IAEA, a penalty term was added to the chi-square function. The final
chi-square statistic, Equation 1, included x, the power manipulation parameter, nb, the number of
antineutrinos counted in bin b over a given count integration period, n′b, the expected number of
antineutrinos counted in bin b, and σnorm, the propagated uncertainty throughout the process up until
this point. The power manipulation goodness-of-fit variations are illustrated in 2 for a count
integration period of 3 months.
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Once the chi-square values were calculated for each diversion scenario, they were applied to a
distribution, as seen in Equation 2, previously determined by Blennow et al [10] where T0 is the χ2
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Figure 2: Effect of goodness-of-fit function minimization for diversion 1a. Figure from Stewart [7].

value with an associated distribution, T . The final safeguards power can then be calculated using
Equation 3, in which Φ is a cumulative distribution function and T α

crit is a critical threshold set for the
false positive rate of 0.05. Following IAEA safeguard limits, the safeguards power needed to exceed
0.2 to reasonably detect low-probability diversion scenarios [1].
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MACHINE LEARNING ANALYSIS
An alternative method for determining the safeguards power of these diversion scenarios was applied
through a machine learning approach. Since supervised machine learning methods require labeled
datasets, the antineutrino spectra distributions were sampled and normalized for data training and
testing. While an ideal system is trained to safeguard against all possible diversion scenarios, it is
impossible to simulate every possible scenario for processing. If the system is robust, however, it
could reasonably safeguard against unexpected scenarios. To test the impact of model generalizing,
two training/test variations were applied to model generation. The first training/test grouping
involved training and testing 12 models, in which each individual model was trained and tested for a
specific diversion scenario. These models represent the RETINA system being fully prepared to
identify a specific diversion scenario. The second training/test group bins 11 scenarios together for
training and the excluded scenario for testing. These models represent the RETINA system being
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Figure 3: Histogram (left) and normal fit (right) of SVM classification values from individualized
model diversion 1a sampling.

prepared for a variety of cases, but encounters a scenario that was never expected. The 12
individually trained and tested models are referred to as “Individualized Models” while the 12 group
trained and individually tested models are referred to as “Unseen Models”.

The support vector machine (SVM) model was chosen for diversion classification based on its good
soft-margin generalization properties and popularity in many fields [11]. As seen in Figure 3,
classification value samplings for the diversion scenarios are similar to the reference case and follow
a normal distribution. Based on this fitted distribution with known mean, µcv, and known standard
deviation, σcv, a similar method as described in the chi-square goodness of fit process was used to
determine the final safeguards power. However, while the chi-square distribution accounted for both
the diverted and reference distributions, they remained separated through this machine learning
approach. This difference was translated by determining the excess safeguards power for the
diversion scenario compared to the safeguards power for expected operation (Equation 4).

Power = Φ(
T α

cv,crit−µ ′cv

σ ′cv
)−Φ(

T α
cv,crit−µcv

σcv
) (4)

RESULTS
After applying the chi-square statistical method to the antineutrino count distributions, the results
were placed in Table 1. Safeguards powers lower than 10−16 were approximated to be zero due
calculation floating-point precision limits. For the SVM models, the mean results after generating
106 sample points per model with an 80/20 train-test split for 100 iterations can be seen in Table 1.
While the chi-square approach had a minimum value of 0 for low safeguards power scenarios, it was
possible for the SVM model approach to lead to negative safeguards powers. For cases in which the
diversion scenario distribution is virtually identical to the reference distribution, the stochastic nature
of the sampling method could lead to a larger reference safeguards power than the diversion scenario
safeguards power. Since a negative safeguards power is not realistic and it implies that the
safeguards power is lower than our model precision, 0 was set as a lower limit for the safeguards
power results. The standard deviation for these models are in Table 2.
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Table 1: Mean Safeguards Powers

Chi-Square Mean Safeguards Mean Safeguards
Analysis Powers for Powers for

Individualized Models Unseen Models
1a Nominal 2.21 x 10−2 4.28 x 10−2 3.84 x 10−2

1a Manipulated 2.52 x 10−13 2.08 x 10−2 1.34 x 10−2

1b Nominal 8.56 x 10−4 3.63 x 10−2 3.55 x 10−2

1b Manipulated 6.34 x 10−12 2.28 x 10−2 1.40 x 10−2

2a Nominal 5.63 x 10−12 1.26 x 10−2 1.18 x 10−2

2a Manipulated 0 3.82 x 10−3 3.27 x 10−3

2b Nominal 0 1.01 x 10−2 0
2b Manipulated 0 2.70 x 10−3 0
3a Nominal 4.69 x 10−12 8.93 x 10−3 7.91 x 10−3

3a Manipulated 0 3.46 x 10−3 2.54 x 10−3

3b Nominal 0 6.65 x 10−3 0
3b Manipulated 0 1.47 x 10−3 0

CONCLUSIONS
While the chi-square approach leads to an exact solution, half of the results are lower than the 10−16

precision of the software and therefore considered zero. Most of these low-safeguards powers are for
the manipulated power scenarios, in which the power is shifted to minimize the overall antineutrino
count deviation from expectations. The benefit for this method, however, is that these safeguards
powers are exact solutions. Also, this method does not require any simulated diversion scenarios for
system development. Each case is compared directly to the reference scenario for deviation.
Regardless of the benefits of statistical analysis, all of the safeguards powers associated with this
method are extremely low compared to the 0.2 IAEA low-probability limit.

For all scenarios, the individualized models are the best at predicting diversion scenarios. Not only
are all of the correlating safeguards powers higher than previously determined, but they are
near-exact after 100 iterations. While the best SVM-derived power almost doubles the best chi
square-derived power, significant results are seen for the manipulated scenarios in which the power
was previously considered zero. With all relative powers known with little error, we conclude that
the RETINA system is better prepared for scenarios in which (1) plutonium is pulled from fewer
assemblies and closer towards the center of the core, (2) plutonium is replaced with natural uranium
rather than LEU, and (3) the power of the reactor is not manipulated.

The unseen models, while lower than the individualized models, led to significantly higher
safeguards powers compared to the safeguards powers from statistical analysis. This method,
however, led to a few zero safeguards powers. Assuming the true safeguards powers for this method
are slightly lower than the relative values from the individualized models, it can be assumed that the
precision limit for this model is around the order of 10−4. So while a generalized model can
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Table 2: Standard Deviations for Safeguards Powers

Standard Deviation Standard Deviation
for Individualized for Unseen

Models Models
1a Nominal 6.94 x 10−18 6.10 x 10−4

1a Manipulated 1.04 x 10−17 1.26 x 10−3

1b Nominal 6.94 x 10−18 6.41 x 10−4

1b Manipulated 0 1.15 x 10−3

2a Nominal 5.20 x 10−18 1.32 x 10−3

2a Manipulated 0 1.31 x 10−3

2b Nominal 0 1.77 x 10−3

2b Manipulated 0 1.38 x 10−3

3a Nominal 0 1.33 x 10−3

3a Manipulated 0 1.33 x 10−3

3b Nominal 0 1.75 x 10−3

3b Manipulated 0 1.51 x 10−3

safeguard relatively well against most diversion scenarios, some cases have safeguards powers that
fall below a precision limit.

For future work, this methodology should be further optimized and generalized to fit different reactor
core designs and diversion scenarios. While none of the safeguards powers in this study exceeded
the 0.2 IAEA low-probability limit, different reactor-detector systems could improve the sensitivity
of the proposed RETINA system. Other machine learning methods, such as deep neural networks,
can also be applied to further increase the safeguards powers.
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