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Abstract 

Verifying the operational history of nuclear reactors and by proxy the production of plutonium is key 

to nuclear disarmament efforts. For this, we develop a nuclear archaeology approach through which 

the history can be verified based on nuclide measurements of spent fuel and reprocessing waste. Our 

focus is on reconstructing burnup and cooling time values. Pursuing a probabilistic Bayesian 

inference framework allows us to include various sources of information beyond the measurements 

such as declarations and records. The goal is an ability to identify inconsistencies and to gain an 

insight into the actual history, including robust uncertainty estimates. This paper addresses two stages 

of our research: First, seeking to simultaneously take various isotopic ratios into account, we have 

identified those that minimize the uncertainties of our reconstruction. Since the number of 

theoretically possible ratios is very large, we have employed a computational technique for this 

purpose, Approximate Bayes Computation. Second, we have begun to test our approach initially for 

simple scenarios based on hypothetical simulation-based studies, but also using actual measurement 

data. These were obtained from the Spent Fuel Isotopic Composition 2.0 database. 

Introduction 

While there is extensive safeguards experience in verifying both the correctness and completeness of 

regularly issued nuclear material declarations issued by non-weapon states, there is a lack of methods 

to efficiently and directly verify nuclear material “baseline” declarations, i.e. the first verified 

declaration a state makes upon entering an agreement. Such methods are particularly important in the 

disarmament context: A solid understanding of fissile-material holdings is needed to achieve a 

meaningful degree of predictability and irreversibility of future arms reductions. 

In addition to direct data on produced fissile materials, such records could contain information on 

historical operations of the nuclear facilities. For reactors, in addition to reactor and fuel designs, it 

could include data on reactor power, fuel burnup, and cooling time (which refers to the time passed 

since a specific campaign). We call these data operational parameters. 

Nuclear archaeology is a toolbox that seeks to reconstruct fissile material production histories. As we 

have previously discussed [1], measurements of high-level reprocessing waste can be one element: 

This waste contains nearly all fission products and minor actinides after dissolving the spent fuel. 

Accordingly, it holds a rich isotopic signature of past fuel cycle activities. This waste could to some 

extent be used to compare results with the operational history contained in records, and as such serve 

to check the declaration for consistency. If a state declared that a reactor was used for civilian purposes 

with high burnup, this method could possibly prove that low burnup campaigns for perhaps military 

purposes were run. Similarly, a reactor may have run for more time than declared, which could 

possibly be detected by examining the cooling times. Determining the reactor power coupled with its 

times of operation could lead to a plutonium production estimate.  



In contrast to spent fuel – for which analytical nuclear forensics methods to deduce operational reactor 

parameters exist, reprocessing waste contains a mixture of nuclides in different chemical phases, 

originated from different irradiation campaigns, produced across several years of reactor operations. 

Operational reactor parameters will need to be deduced numerically. While it is not clear whether the 

proposed approach can be applied to complex programs, it may at least be feasible for use in simpler 

programs of a complexity similar to the North Korean case. 

We develop a method that combines measurements of selected isotope ratios, nuclear reactor models 

and domain information in a probabilistic framework, in order to determine plausible irradiation 

histories consistent with the available data. As domain information, we refer to expert knowledge and 

provided declarations and records (with an uncertainty attributed to it as it may be false), possibly 

also intelligence. The central element of our method is Bayes’ theorem, which allows us to discern 

for instance the most likely irradiation history along with a robust uncertainty estimate. 

In previous work [2], we described this method as part of a proof-of-concept study. It took, however, 

only five isotopes into consideration and was purely simulation-based. With this paper, we 

demonstrate a methodology to select a much larger set of isotopic ratios which has the potential to 

significantly increase our reconstruction capabilities. Furthermore, we test the approach based on 

actual measurement data. 

 

Overview of Bayesian Inference 

The solution to the above stated problem can be described in terms of probability distributions. 

Mathematically, it provides a link between the operational parameters and nuclide concentrations in 

terms of conditional probabilities: 

𝑝(𝑥|𝑦) ∝ 𝑝(𝑦|𝑥) ∗ 𝑝(𝑥) 

• The posterior 𝑝(𝑥|𝑦) is the probability of the operational parameters 𝑥 conditional on the 

measured nuclide ratios 𝑦.  

• The likelihood 𝑝(𝑦|𝑥) describes the probability of the measurement 𝑦 being the result of a 

reactor operation described by some selection of 𝑥. 

• Finally, 𝑝(𝑥) describes our prior knowledge on the past operations. 

We describe the likelihood distribution with a normal distribution centered on the measured ratio and 

with a certain variance 𝒩(𝑦, σ2). In the case of several nuclide ratios being measured, and these 

measurements being independent of each other, the total likelihood can be written as: 

𝑝(𝑦|𝑥) =
1

√2π|Σ|
𝑒−

1
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where 𝑌 = [𝑦1, … , 𝑦𝑛] is a vector of measurements of 𝑛 nuclide ratios, 𝐹 = [𝑓1(𝑥), … , 𝑓𝑛(𝑥)] is a 

vector of 𝑛 models describing how the parameters describing the reactor operation impact the isotopic 

ratios of the spent fuel 𝑦𝑖, and Σ = 𝑑𝑖𝑎𝑔(σ1
2, … σ𝑛

2) is a 𝑛 x 𝑛 diagonal matrix containing the 

corresponding variance estimates of each measurement and model.  



While elegant and compact, Bayes’ theorem can be solved analytically only for simple models. In our 

case, a sampling method must be used in order to estimate the posterior distribution. This sampling 

is done via Markov Chain Monte Carlo (MCMC), a technique in which a sequence of samples is 

generated such that the probability of a new sample is dependent only on the probability of the 

previous sample [2]. We use the Python package PyMC3 [3] and its NUTS algorithm [4], which 

facilitates the efficient exploration of the posterior probability distribution. 

Reactor Models 

Bayesian inference requires a model which describes the physical system that generated the 

measurements, in our case, a reactor model that determines the spent fuel composition based on 

different input parameters. For this research, we have selected the Obrigheim reactor in Germany as 

abundant details on its design, as well as measurements of selected spent fuel assemblies are available 

in the open literature [5] and the SFCOMPO-2.0 database [6]. We have implemented a fuel assembly 

model using the Serpent 2 Monte Carlo software package [7]. Figure 1 shows the 2D infinite lattice 

model created in Serpent 2 and a table containing details of the modeled reactor.  

 

 

For the BE170 assembly, the SFCOMPO-2.0 database provides the irradiation history as well as 

measurements for a small group of nuclides using different measurement methods. To evaluate the 

quality of our Serpent 2 reactor model, we examined the calculated-to-experiment (C/E) ratio between 

the nuclide concentrations in our model and the database, following the declared irradiation history 

with the caveat that shutdown times were not simulated, thus creating a simplified model of the 

historical irradiation. Based on Figure 2 we conclude that this simplification of the irradiation history 

produces satisfactory results. 

A typical Bayesian inference calculation requires about 10k model evaluations or simulations. To 

enhance the performance of the sampling algorithm, several sampling processes are run in parallel, 

each one generating the same number of samples. Even with powerful computers, it is neither feasible 

nor efficient to perform such a number of Monte Carlo reactor simulations for each reconstruction 

attempt. We address this through a series of surrogate models that approximate the evolution of each 

nuclide ratio during and after the reactor’s operation, which run much faster. 

 Obrigheim – BE170 Units 

Fuel Type Reprocessed UOX - 

Average Fuel 

Temperature 

960.4 K 

Fuel Density 10.05 g/cm3 

Average 

Moderator 

Temperature 

572 K 

Average 

Moderator 

Density 

0.7299 g/cm3 

 

Figure 1: Left: Obrigheim PWR, 2D Fuel Assembly Model. The blue circles represent fuel rods, the grey ones control 

rod tubes. Right: Some details of the KKW Obrigheim reactor. Source: [5] 



Surrogate Models 

Our models are based on Gaussian Processes (GPs) [8], a technique which produces better results for 

this application when compared to the frequently used models based on Cubic Spline Interpolation 

[9]. Through a GP, a function can be interpolated without prescribing a specific function shape. 

Instead, a model is constructed which considers an infinite number of functions that pass between the 

function values and respects the described covariance matrix. As a result of this, a GP model 

interpolates at previously unseen input values and provides an estimate of the uncertainty of their 

prediction. To create each surrogate model, we have used 1000 Serpent 2 reactor simulations with 

burnup, power and cooling time sampled using an in-house Sobol Quasirandom Sample Generator. 

Such a sampling method has advantages over random and grid sampling with regard to a good 

coverage of the parameter space [10]. The ranges of the parameter space used for the samples is the 

following: power density [0.015-0.050] kW/g, burnup [0.01,60] MWd/KgHM and cooling time [1-

21600] days which corresponds approximately to 60 years. The parameter ranges correspond to 

reasonable operational limits of the reactor. Each GP model has been made with a special Python 

package written in-house and uses 200 samples for training and the rest for testing the models.  

Selecting optimal nuclide ratios Bayesian Inference in three steps 

In our previous study we had considered only a handful of nuclides for our computer experiments. 

As one of the conclusions of that research, we proposed using nuclide ratios instead of individual 

nuclide concentrations to address the issue of complex chemical phases (supernatant, precipitates, 

colloids, suspensions etc.) present in reprocessing waste tanks. While the concentrations of elements 

 Figure 2 C/E ratio for the Obrigheim BE170 fuel assembly. We observe that the simplified model where shutdowns are 

omitted performs well enough for most nuclides. We have excluded from further analysis those with significant deviation 

(>20%) from the measured concentrations. Deviations for 134Cs/137Cs and 144Nd/148Nd are caused by the short half-lives 

of 134Cs (2.06 years) and 144Ce (284.9 days), on which 144Nd depends. The major differences for 241Am, 243Am and 242Cm 

are acknowledged and attributed to measurement problems by the SFCOMPO-2.0 database.    



might vary between phases, since isotopes of the same elements behave similarly, we would expect 

the isotope ratios of same elements to remain approximately constant. 

We have now developed a method to determine the best-performing ratios that will enable us to 

reconstruct some of the operational parameters. A number of typical isotopic ratios to indicate 

parameters such as burnup and cooling time are well-known in the nuclear forensics field. They are 

usually ideal in the sense that they do not have strong dependencies on any other parameters, thus 

facilitating the reconstruction. Our scenarios are, however, considerably more complex, we try to 

deduce a larger number of parameters. Therefore, we were interested in identifying a larger set of 

ratios – some perhaps less obvious, as they are dependent on various parameters simultaneously. They 

nevertheless carry information that can be exploited by the Bayesian inference algorithm and reduce 

the posterior uncertainty. For this reason, we opted for a numerical selection approach. 

As the measurements for the Obrigheim reactor as reported had been calculated back to the fuel 

discharge date, we will perform the following analysis only for burnup and reactor power. However, 

our approach can be repeated for other pairs of parameters, such as cooling time and power. 

Our method consists of three steps. The first step is to perform a variance-based sensitivity analysis 

[11], which we have done using a set of 6000 reactor simulations with parameters generated from our 

Sobol Quasirandom Sampler. We start with 28301 possible total ratios, from which noble gases and 

elements with Z smaller than 31 have been excluded, as their fission yields are negligible. The 

sensitivity analysis allows us to filter those ratios which are neither sensitive to power nor burnup. 

Following this analysis, we end up with 319 ratios. From these ratios, we construct (
𝑛

𝑘
)= 50721 ratio 

pairs and generate for each one a 2D interpolator model using the SciPy library from Python [12] and 

200 samples from the set of simulations. 

In the second step, we compute the posterior distribution of burnup and power for all ratio pairs for 

different combinations of these parameters. To do this, we create two 2D grids consisting of the 

possible combinations of values for burnup and power. We refer to the first as the ‘measurement grid’, 

a 10x10 grid evenly spaced over the parameter ranges from which we will generate ‘measurements’ 

from the interpolator models. The second grid is 1000x1000 and we refer to it as the ‘evaluation grid’, 

as we evaluate the posterior on each point of this grid.  

The evaluation of the posterior is as follows: first we choose a cell in the measurement grid and 

compute the ‘measured value’ for each ratio of the pair. We then calculate the likelihood function for 

each point of the evaluation grid. Figure 3 illustrates the selection method. Although straightforward, 

this method is, however, not practical for more than 2 or 3 parameters due to the curse of 

dimensionality. As the variances of the likelihood, we consider the minimum possible measurement 

error,1 that is, the statistical error estimated by simple error propagation as given by [13]: 

σ

μ
(
𝑁𝑥
𝑁𝑦
) [%] = (

1

𝑁𝑥2
+

1

𝑁𝑦2
)

−
1
2

∗ 100 

 
1 As mentioned before, the error that tends to dominate in the reconstruction process is the reactor model error, 
however, since we don’t have an error estimate for every possible ratio combination, we have decided to use the 
minimum statistical error instead of applying some blanket error. We have nevertheless obtained successful results 
with this method. 



Once we calculate the posterior for each point in the evaluation grid, we can estimate the quality of 

the reconstruction, for this we calculate the marginal posterior distribution of each parameter and their 

mean and standard deviation. This is done by integrating over the grid axis opposite to the parameter 

of interest (e.g. to compute the marginal for power, we would have to integrate over burnup): 

𝑝(𝑃|𝑦) = ∫ 𝑝(𝐵, 𝑃|𝑦)𝑑𝐵
𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛

 

By repeating this process over all the points in the measurement grid, a map of the reconstruction 

quality for each ratio pair can be constructed over the entire range of burnup and power levels. 

For the final step of our selection method, we repeat the previous process for all ratio pair 

combinations and rank the ratios for each cell in the measurement grid based on their maximum 

posterior uncertainty. From the rank we can determine a set of ratios that enable the reconstruction of 

burnup and power no matter their combination. While it is sufficient to take only those that optimize 

the posterior, it is a good practice to consider more ratios down the rank in order to make our approach 

more robust, thus complicating possible attempts at manipulating certain nuclide ratios.  

Having applied our method, we have found a set of 54 ratios which we show partially in Table 1. 

While this process only guarantees our approach will work for reconstructing the history of one fuel 

assembly or batch of reprocessing waste, we have found that the identified optimal ratios produce 

very good results when reconstructing a mixture of at least two batches, as we will see in the next 

section.  

 

 

Figure 3: Ilustration of the method for selecting nuclide ratios. Since some ratios have complex dependencies on the 

parameters, the spread of the posterior distribution will vary for different values on the measurement grid. In the example, 

we observe 4 points which are mapped to the evaluation grid. The green point has the smallest posterior variance. 

 

 

 

 



Table 1: Partial list of selected ratios for burnup and power  

Element Ratio  Element Ratio  Element Ratio 

Sm 148Sm/152Sm 
147Sm/148Sm 

 Sn 116Sn/122Sn 
124Sn/126Sn 

 Nd 145Nd/146Nd 
143Nd/148Nd 

Zr 90Zr/92Zr 
90Zr/93Zr 

 Sb 121Sb/125Sb 
121Sb/123Sb 

 Cs 133Cs/134Cs 
133Cs/137Cs 

Eu 151Eu/154Eu 
152Eu/155Eu 

 Gd 154Gd/155Gd 
154Gd/156Gd 

 Se 77Se/79Se 
78Se/80Se 

Pd 104Pd/107Pd 
104Pd/105Pd 

 Cd 110Cd/112Cd 
110Cd/114Cd 

 Er 168Er/170Er 
167Er/168Er 

Ba 135Ba/136Ba 
136Ba/137Ba 

 Dy 160Dy/161Dy 
160Dy/162Dy 

 Sr 88Sr/90Sr 

 

Validation and Scenario studies 

Method Validation  

First, we examine whether we can reconstruct information on the irradiation of the spent fuel sample 

as given in SFCOMPO-2.0. Therefore, we consider the measured isotopic ratios (i.e. not those just 

calculated) with the exception of 134Cs/137Cs,144Nd/148Nd, Xe ratios, 241Am, 243Am and 242Cm. The 

first two have large deviations in the C/E ratio caused by their short half-lives relative to the simplified 

reactor history we have considered. The Xe ratios have been omitted due to their volatile nature, as 

their measurement would not be possible in the case of reprocessing waste. Finally, the Am and Cm 

ratios have also been omitted due to their C/E ratio. Their deviations have been attributed to 

measurement problems by SFCOMPO-2.0 [5]. 2/3 of the nuclide ratios used for the reconstruction 

have C/E values between 95-105%. The rest of the ratios have values between 90-110%. The mean 

C/E is 98.3% with a standard deviation of 5.5%. 

For the likelihood variance, we have assigned to each nuclide the C/E deviation calculated from the 

Serpent 2 model. Since we find that even for only 200 training samples, the GP model error is 

negligible and the measurement error is also very small for the nuclides we have considered, we find 

that the reactor model error dominates over the rest of the uncertainty sources.  

Using PyMC3, we generated 40k samples from the posteriors. Unfortunately, it was not possible to 

reconstruct the mean power level of the reactor. This is to be expected, as based on a sensitivity 

analysis, we found that none of the measured ratios is strongly sensitive to power. The reconstructed 

burnup, however, shows a well-defined distribution whose mean matches the declared value, and 

whose standard deviation allows us to estimate a relative uncertainty of approximately 5%. The 

posterior uncertainty is smaller than the average likelihood uncertainty, which can be expected as 

several of the considered ratios are sensitive to burnup. This phenomenon is at the core of our 

Bayesian inference approach. Consequently, if we measure further informative nuclide ratios, we 

expect the posterior uncertainty to shrink provided new and non-redundant information is contained 

by the additional ratios. 

Next, we attempt to reconstruct information on two different reactor operations, based on isotopic 

ratios of hypothetical high-level reprocessing waste, a mixture from both reprocessing campaigns. 



Specifically, we have reconstructed a scenario of two batches where one corresponds to the 

Obrigheim spent fuel measurement, and the other is a hypothetical case. We then simulate a waste 

‘measurement’ of the ratios present in SFCOMPO-2.0. This is done by simulating the history to be 

reconstructed using the GP models and obtain the isotopic ratios from them. Then, we sample each 

‘measurement’, assuming a normal distribution with the GP results as mean value and the 

corresponding standard deviation estimated from the mean and the C/E value. In this case, we have 

simulated a low burnup campaign of 5 MWd/kg operating at the same mean power as the first case. 

Such a combination of batches of low and high burnup is of interest for non-proliferation, since a 

state could declare a civilian program with high burnup, but also run an undeclared military program 

at low burnup. 

As can be seen in Figure 4 (left side) we can easily discern the two batches (assuming a scenario 

where the proportion of the mixture is 1:1), although there is considerable uncertainty on the mean 

values of each. It is also possible to determine the mixture proportion.  

As a last scenario, we repeated this calculation but now with the nuclide ratios we identified in the 

previous section, obtaining both hypothetical ‘measurement’ values the same way as described above. 

This time, we assume a 5% uncertainty for each ratio. Figure 4 (right side) shows the results. The 

improvement is significant for both burnups and the mixture proportion. To further explore the 

capabilities of our method, we studied the behavior for different mixtures with different proportions. 

The results contained in Table 2 shows a good overall performance of the method. We observe that 

the absolute standard deviation of the reconstruction is approximately the same for both burnups, i.e., 

the relative uncertainties are larger for low values. Still, even a large standard deviation of more than 

10% is well-suited to distinguish between low and high burnup campaigns. More research is needed 

to study posterior uncertainties for various scenarios.  

 

Figure 4: 2D Histogram of the Joint Posterior Distribution for the mixture of 2 batches of reprocessing waste. The left 

plot shows the result obtained when using the ratios from the SFCOMPO-2.0 database, the right the ones obtained using 

the ideal set of ratios. The brighter areas represent a larger probability. The uncertainty is much smaller when using the 

optimal set of ratios.  



Table 2: Summary statistics for the last scenario. Reconstructed values are indicated by mean and standard deviation of 

the posterior distribution. In parenthesis we indicate the relative uncertainty of the reconstruction. Reconstructed burnup 

units are MWd/kgHM. 

True 
Burnup 1 

Reconstructed 
Burnup 1 

True  
Burnup 2 

Reconstructed 
Burnup 2 

Mixture 
Proportion 

Reconstructed 
Mixture 

Proportion 

 
 
          5 
MWd/kgHM 

5.52 +/- 0.63 
(11%) 

 
 

27.5 
MWd/kgHM 

27.83 +/- 0.73 
(2.6%) 

0.5 0.50 +/- 0.02 
(5.3%) 

5.01 +/- 0.61 
(12%) 

27.45 +/- 0.61 
(2.2%) 

0.4 0.39 +/- 0.02 
(6.7%) 

4.71 +/- 0.66 
(14%) 

27.20 +/- 0.33 
(1.2%) 

0.3 0.29 +/- 0.02 
(6.7%) 

5.46 +/- 0.46 
(8.5%) 

28.56 +/- 1.13 
(3.9%) 

0.2 0.23 +/- 0.02 
(11%) 

 

Conclusion 

We have demonstrated a method for the determination of an optimal set of ratios for the reconstruction 

of any combination of operational parameters. By design, with these ratios we achieve a very high 

precision and accuracy when reconstructing burnup. We have presented and successfully tested our 

method for the reconstructing burnup based on an actual spent fuel measurement. In addition, when 

considering scenarios for high-level waste consisting of two reprocessed spent fuel batches, the 

burnup levels of each batch and the mixing fraction can be successfully reconstructed. 

While these scenarios could have possibly been solved by simpler means, taking fewer isotopes into 

account, our Bayesian approach has the potential to solve also more complex scenarios, such as more 

extensive operational histories, deducing further parameters of nuclear archaeology interest beyond 

burnup. Naturally, a next step will be to systematically examine the possibilities and limitations of 

Bayesian inference in such cases, including the use of priors. 
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