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ABSTRACT

Machine learning (ML) has seen many successes in a variety of domains from image recognition to
natural language processing. There has been a general call to apply these concepts to safeguards in
order to develop more cost-effective solutions. The International Atomic Energy Agency (IAEA) has
specifically solicited next-generation approaches to help remain effective in the face of continued
growth in the nuclear industry. One specific priority is to identify, evaluate, and test promising
applications of machine learning and/or artificial intelligence to improve safeguards. While some
applications such as image recognition are relatively straight-forward, application to other safeguards
tasks presents unique challenges. Nuclear material accountancy (NMA), for example, would benefit
greatly from efficient algorithms that could utilize unattended measurement systems, which are often
accompanied by higher uncertainties, to reduce costs. Current practices for large nuclear facilities
employ frequent use of destructive assay (DA) measurements, which while very accurate, are time
consuming and expensive. This work outlines some unique challenges associated with applying
deep learning to improve NMA. It can be shown that often traditional accountancy approaches will
outperform unsupervised ML approaches when used with datasets contaminated with measurement
errors. ML can remain competitive to traditional accountancy, however, special care must be taken to
mitigate the impact of measurement errors that disproportionately affects ML-based approaches.

1 Introduction

The goal of international nuclear safeguards is the timely detection of diversion of significant quantities (SQ) of nuclear
material for weapons purposes and deterrence of such diversion by the risk of detection. The IAEA [1] has several
guidelines for achieving these safeguards goals which are based on open literature estimates for weaponization of nuclear
material. These guidelines are informed by material type, form, and quantity [2, 3]. One cornerstone of traditional
safeguards is nuclear material accountancy (NMA). Here, physical measurements are combined with statistical tests to
verify nuclear material has not been diverted.

NMA can be thought of as an audit that verifies a facility’s reported quantities of material and aims to ensure that it is
present and has not been diverted. Several measurement techniques are employed such as sampling, weighing, and
item counting. NMA is particularly useful in that it requires no knowledge of loss pathways and has a straightforward
statistical framework. However, one drawback is that high precision measurements are often required for NMA at
facilities with large inventories of material.
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2 Traditional Statistics for Material Accountancy

True values of material properties, such as mass, can never be known due to the presence of measurement error.
Safeguards measurements are often characterized by a multiplicative error model as described in Equation 1 below.

My =Git(14+ S; + Rit)
where

S; ~ N(0,0%)

Rii ~ N(0,6%)

(D

M; + is the measured quantity at location ¢ and time ¢ and G ; is the true quantity of interest. This error model usually
applies to all of the individual terms in the MB.

The short-term systematic error, S; arises from measurement conditions or settings such as calibration curves which
are not changed for some period of time and vary in an unpredictable way and is difficult to reduce. In contrast, the
random error I?; ; varies in an unpredictable way under repeatable conditions and can be reduced through repeated
measurements.

The random and systematic errors (R; ;, S;) are assumed to be independent Gaussian random variables with zero mean
and variances 6% and 6%. The specific value of the variances 0% and 6% depend on the measurement technology that is
used. This results in an observed measurement that is distributed according to Equation 2.

M~ N(Git,Gi (0% + 02)) )

Careful analysis is required to detect material losses in the presence of these measurement errors. Traditional anomaly
detection algorithms found in the literature will fail to perform adequately on these error contaminated datasets. The
following sections briefly describe some principle definitions and properties used in statistics for traditional nuclear
safeguards.

2.1 Material Balances

The material balance (MB), also called material unaccounted for (MUF) or inventory difference (ID), is a fundamental
quantity used in NMA. The MB is a straightforward calculation [4] described below in Equation 3.

Min Tlout

MB; = (; L1+ Z; Ting,; — Z} Toutm) - ; Iy (3)

Terms in Equation 3 include the total input transfer (Y,

i Ting ), the total output transfer (3 T'out; +) and total
inventory (31", I; ;) at time ¢.

Large facilities often have multiple material balance areas (MBA), each of which have their own MB that is calculated
at regular intervals of time. The MBA is a physical area that is designated by an subject matter expert and is based
on several properties such as quantity and type of nuclear material present. The material balance period (MBP) is the
interval of time at which the MB is calculated for each MBA. The MBP is also chosen by a subject matter expert and is
often a balance between accountancy goals and ease of measurement for individual material locations.

Under normal conditions it is expected that MB, = 0 as all material would be accounted for. However, as described in
Equation 1, the individual components of the MB have measurement error resulting in MB; # 0 even under normal
conditions. This can complicate efforts to detect losses using the material balance directly.

As a consequence of measurement error the material balance can be expressed as a normal distribution in Equation
4 where MB; has a mean, p, that is directly related to any material loss and a variance, afAB, which is a function of
measurement error.

MB; NN(NJthl%/[B) “4)
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2.2 Sequential Material Balances

It is desirable to extend the concept of the material balance to a sequence of values for two reasons. First, the IAEA has
requirements for the detection time of a loss of nuclear material [2]. More frequent material balance calculations, which
would result in a sequence of material balances, could potentially detect a loss sooner than a single yearly material
balance.

Second, consider a material loss which can be thought of as a shift in the mean of the material balance from g to py in
Equation 4. It follows that the probability of detection for a material loss directly relies on oyp. As the variance in the
material balance increases the probability of detection will approach the false alarm probability (i.e. random chance of
detection). More formally, | im  PD(N(u; — pf,onp)) = FAP where FAP is the false alarm probability. This is

demonstrated in Figure 1 where the probability of detection is shown as a function of the material balance variance with
a constant detection threshold and material loss.

Impact of oy on probability of detection for
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Figure 1: Probability of detection as a function of oz for a constant false alarm probability

One of the ways to reduce the material balance variance is through more frequent material balance closures. Although
not described in depth here, note that there is a limit to the beneficial impacts of increased material balance closures [5].

Now that the benefits of the material balance sequence are clear, Equation 3 is extended to a more general case describing
a temporal sequence of material balances in Equation 5. Note that time is denoted as ¢ (where ¢ > (2 « MBP)) and the

MB sequence (MB,) is expressed as a multivariate normal distribution with mean p; and covariance ;. As with the
singular material balance, measurement uncertainty forms the basis for the covariance of the material balance sequence.

MB; ~ MVN(z;, %)

where
MB; = (MB;,MB,, ..., MB;) )

Ht = (/’617/’[/27 "'a/j/t)T

Briefly note that MB sequence exhibits some degree of correlation between sequential MBs. That is, inventories for
previous material balance are used to calculate the current material balance. Although not discussed in depth here, it is
possible to estimate the covariance matrix to produce a uncorrelated sequence of MBs. This is commonly referred to as
the SITMUF transform, which was introduced by Picard [6]. This uncorrelated sequence of material balances results in
better detection probabilities when used with sequential testing methods. A key feature of the SITMUF transform is the
explicit treatment of the known error structure.
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3 Machine Learning for Loss Detection

Machine learning (ML) has seen incredible success in several domains and has been considered as a candidate to
improve overall detection probability for material losses while cutting costs associated with measurements. It would be
desirable if ML could improve detection of material loss through use of process monitoring (PM) and non destructive
assay (NDA) that often have higher uncertainties that prohibit direct use in a MB calculation. Instead of direct actinide
quantification seen with traditional approaches for NMA, the ML approach would attempt to develop a simple binary
metric (i.e. normal or off-normal) to determine if a process is operating as expected.

It is important to note that this work only represents one approach for applying ML to NMA. Specifically, focus is
restricted to unsupervised neural-based ML approaches, which are a class of neural networks that do not require labeled
examples of anomalous behavior. This is a reasonable analog to traditional approaches to NMA which do not require
examples of material loss pathways. This work also exclusively considers matters concerning substitution losses where
material removed is replaced with an equal mass of less desirable material. Direct losses, where material is not replaced,
is not considered as detection becomes trivial through the use of a bulk mass measurement that relies on relatively high
precision unattended measurements.

3.1 Problem Statement

This work proposes an unsupervised machine learning approach for NMA where it is assumed that a neural network
can be used to learn a function y = f(z,6), when given some PM data, , measured from an unattended system
and set of parameters, , to accurately predict some other quantity resulting from normal facility behavior, y. Under
off-normal conditions, such as a material loss, the original function, y = f(z, 8), should provide poor predictions as it
no longer reflects the current state of operation at the facility. Thus, the residual between the prediction, ¢, and observed
value, y, should be small for normal conditions and large for off-normal conditions. An example of this approach
applied to a large reprocessing facility might have head end NDA measurements as the input data, x, with product NDA
measurements as the response y which is used to train an arbitrary ML algorithm to understand the process by which
the input material, z, is transformed to a final product, y, such that y = f(x,6). A graphical representation of this
approach is shown in Figure 2.

Flowin Facility Flow out
v > Process >
| Measurementl
; Neural Predictilon Comparison Anomaly?
Network P (Yes/No)

Figure 2: Proposed setup for applied ML for NMA

3.2 Machine Learning Introduction and Training

ML algorithm are often initialized according to some strategy that is problem specific. Initially, the algorithms
themselves produce nonsensical results. Training is used to adjust weights of an algorithm to give predictions that are
closer to the training dataset. Specifically, gradient-based optimizers are used to minimize some objective function,
which is problem dependent. For example, the training objective could be categorical (e.g. distinguish between cat and
dog pictures) or continuous (e.g. predict house prices given square footage and number of rooms).

This proposed framework in the previous section uses a mean squared error (MSE) loss function, % S (v — y})Q,
which is appropriate given the goal is to predict facility behavior in a continuous space. During training, the MSE loss
function is minimized in order to find a set of parameters, 6, such that f(z, é) provides a good prediction of y when
applied to the training dataset.

It is important to note that training can often be expressed in statistical terms. For example, minimization of the MSE
loss function is equivalent to maximization of the Gaussian log-likelihood. Effectively, during training the optimizer is
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adjusting the parameter estimate 0 (i.e. weights and biases) to maximize the likelihood (i.e. distribution similarity) of
the predicted distribution p(¢) and the training distribution p(y).

Data requirements often scale with the size of the model which necessitate large training datasets. Many real-world ML
problems are overparameterized, that is, there are more parameters in the model than there are training examples. This
leads to multiple possible solutions to the optimization problem which can lead to suboptimal performance. Consider
the equation 5 = 322 + 8y + 1024 given that 20 = 10z. The variable x can be solved for, however, y and z are
unconstrained leading to many possible solutions. Consequently, increasing the size of the training dataset will almost
always improve performance as the training distribution is better characterized.

4 Machine Learning Limitations for Loss Detection

The dataset used for training a machine learning algorithm must meet certain requirements. First, the dataset must
adequately represent the process of interest (i.e. training and testing distributions match) and secondly, the dataset must
be large enough to adequately train the machine learning algorithm. The context of a sufficiently large training dataset
depends on the size of the algorithm used. It could be difficult to collect large quantities of training data especially from
nuclear facilities. However, it is reasonable to assume that if the data could be obtained that it would originate from
multiple measurement campaigns. That is, even if the same process or feature were observed repeatedly, the collected
data would have different calibration curves (and thus different systematic biases).

Consequently, the training dataset would then represent the total range of expected normal conditions which include
not only process variation, but also measurement variations. When multiple sets of data from different campaigns are
aggregated together it will increase the distribution variance as seen in Figure 3. This is an important consequence to
note as increased variance in normal behavior will reduce performance of any anomaly detection algorithm, including
the proposed ML approach.

Increased variance due to multiple dataset aggregation
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——— Aggregate Dataset
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Figure 3: Probability density functions for multiple normal datasets

As another example, consider the task of predicting a simple sine function, y = sin(z) + 10, with an applied safeguards
error structure (Equation 1). This example can be more formally expressed by Equation 6. Here, the objective is to
minimize the MSE by learning yobserved,t = f (Tobserved,t; 0)-

Zirue € [—37, 37]

Yirue = SIN(Zirue) + 10
Zobserved,t = Lirue (1 + Ry + 5)
Yobserved,t = ytrue(]- + Ry + S)

(6)

A Bayesian neural network that consists of Flipout layers to learn from the training data was used for this next example.
This network contrasts with a traditional neural network in that the Bayesian network has weights that are expressed
as distributions. Consequently, the Bayesian network can be sampled multiple times resulting in different predictions
for the same input. This example considers the performance of this Bayesian network as the level of random and
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systematic error in « from Equation 6 are increased. Figure 4 shows the predictions of the network when trained on
1%, 3%, and 5% random and systematic errors. Increasing error increases the variance of the weights of the neural
network, which in turn, also increases the variance in the prediction.

Impact of systematic error on Bayesian prediction
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Figure 4: Bayes neural network prediction for sine wave with +20.

Recall that the goal of the proposed ML approach is to use a neural network to detect changes in some learned baseline
to detect loss of nuclear material. As the uncertainty in the training data (driven by measurement) increases, so does the
uncertainty in predictions. This is clearly visible in Figure 4 where a Bayesian network is used, but note this occurs in
all deep neural networks. For example, a traditional feed forward neural network would tend to learn the mean of the
training distribution (essentially the average value of a feature at a specific location and time when also factoring in
measurement error) which would also provide poor per-run predictions. Such prediction uncertainty is a manifestation
of the problem as currently framed (i.e. material losses will appear as deviations from expected baseline measurements).
This problem cannot be mitigated through traditional preprocessing methods (e.g. scaling, whitening, standardization)
operating on the entire dataset or through selection of specific architecture (CNN [7], LSTM [8], fully-connected, etc).
The next several section seeks to bound the problem and compare this specific ML approach to traditional statistical
methods.

4.1 Establishing lower limit of detection

Previous discussion framed material loss as a mean shift in the distribution of some feature. Leveraging methods that
require knowledge of the underlying distribution will prove difficult in practice due to limitations on data availability.
It is useful nonethelessess to conduct several thought experiments to bound the material loss problem in terms of
systematic error and inventory size as both will have a significant impact on detection of a material loss.

Although similar experiments can be performed using techniques such as ANOVA (analysis of variance), first consider a
simple Bayes ratio test used to compare distributions. The use of Bayes theorem allows establishment of the odds ratio as
in Equation 7, which describes the relative odds of some data point D belonging to distribution 6055 = N (t10ss, 010552)

VS Onormal = N (foss, Tloss> ). Note that Equation 7 assumes that %

purposes but is impossible to quantify in practice due to the unknown distribution P(0;,ss)-

= 1, which is assumed for illustrative

normal
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P(D|GIOSS)P(01055)

P(Gloss|D) = P(D)
P(D enorma P enorma
P(Gnormal|D) = ( | P(ll)))( 1)
P(oloss‘D) _ P(Dleloss)P(eloss) _ P(Dleloss)

P(enorma]|D) B P(D|9norma])P(0normal) B P(D|0normal)

where (7)

P(Dflo) = ———e 2T’
oss) = ——————€ Tloss
: Oloss V 2m

and

]_ _l(D*“norma])2

— e 2
Onormal V 2m

P normal

P(D|9normal) =

It can be shown using Equation 7 that, assuming equal odds of drawing from each distribution, the odds of belonging to
one distribution over another decreases with increasing variance. This is an important observation that has consequences
for applied ML for NMA. This reinforces intuitions from previous sections that variance in an observed signal will
decrease anomaly detection performance, even for a machine learning approach. That is, even applied ML approaches
cannot escape the limitation i PD (N (uy — pf, 0?) = FAP.

o—00

This example can be extended to consider the impact of both inventory size and systematic error on the odds of
belonging to the normal distribution over the (in practice unknown) loss distribution as illustrated in Figure 5. Two key
assumptions were made in Figure 5. First, it was assumed that the evaluation observation D was precisely the mean of
the loss such that D = 0. Secondly, it was assumed that there was a sufficiently large dataset to capture the variation
due to measurement errors. The majority of Figure 5 shows an odds ratio of 1 meaning that there is an equal probability

that D belongs to 0,rmar OF B10ss- The only regions with a reasonable expectation of loss detection (i.e. odds > 1 for
P(elosle)

FI(— D)) are areas with low uncertainty values.

It should be stressed that the use of a likelihood ratio is a simple toy example that is not used in safeguards often as the
true loss distribution P(f)s) is unknown. However, this example provides some intuition behind the lower limits of
detection for any algorithm attempting to detect anomalies at a nuclear facility. Regardless of the algorithm or approach,
an increase in measurement uncertainty and total inventory will result in a larger variance and lower probability of
detection for a specific loss pattern. The next section will describe why the proposed ML approach is particularly
sensitive to this effect.

Impact of systematic error on loss detection
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Figure 5: Odds ratio of a loss of 8kg of material assuming that D is the loss mean. Higher odds indicate increased
change that D belongs to the loss distribution and not the normal distribution
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S Comparison of Machine Learning and Traditional Statistics

Traditional safeguards have often focused on lowering the variance of measurements precisely due to reasons described
in the previous section. Often, destructive assay measurements are required to reach safeguards goals for facilities
with large inventories which incur a significant cost. However, concepts like the material balance are well understood
and permit operations such as the SITMUF transform that removes correlations in the MB sequence. The estimate of
variance in the MB sequence improves over time as successive measurements are made. This leads to an increasing
probability of detection for a given loss pattern until the covariance estimate stops improving. It is also important to
note that the covariance of the MB sequence utilizes observations from a single set of measurement calibrations (i.e.
systematic errors).

The proposed ML approach has two key disadvantages compared to traditional statistics for NMA that arise from the
conventional training scheme used for ML algorithms. First, it is reasonable that a sufficient large training dataset for
any ML algorithm for NMA would be comprised of multiple measurement campaigns each with a different sensor
calibration. The composite training dataset would capture changes that not only arise from facility operation but also
measurement error. Consequently, this will lead to a larger variance than a dataset that captures facility operation
variance alone. This ultimately leads to a more difficult change detection problem. Second, there is no explicit treatment
of the underlying error structure in the proposed ML method. This contrasts with the SITMUF transform which does
account for measurement error through the covariance estimate. This results in a ML-based approach with a larger
variance in the training dataset and no regard for measurement error which almost all but guarantees a worse probability
of detection for any loss pattern as compared to traditional statistics for NMA.

For a supporting thought experiment, return to the Bayes ratio described in Section 4.1 to compare the traditional and
ML-based approaches when a composite training dataset is used (i.e. dataset with multiple measurement campaigns).
The traditional approach is assumed to have a standard deviation o = 1, however, the ML-based approach will have to
aggregate multiple sets of measurement data resulting in a higher standard deviation of ¢ = 1.4). The distributions
for this thought exercise are summarized in Equation 8. Subscripts 7', M refer to distributions associated with the
traditional and machine learning approaches respectively. Superscript * refers to a mean shift after some material loss.

6 = N(100,1.0)

01 = N(92,1.0)

Oy = N(100,1.4) ®)
Oy = N(92,1.4)

Clearly the odds of belonging to the loss distribution, for the same observation, are higher when considering the lower
variance distributions (i.e. traditional NMA) than the higher variance distribution (i.e. ML approach with aggregated
training dataset). Note that the total difference between standard deviations of the traditional safeguards and ML-based
approaches (roughly 0.4 in this thought example) may vary depending on several factors, however, the variance of the
ML training distribution will almost always be higher than the error adjusted SITMUF sequence.

Impact of o on mean shift
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Figure 6: Systematic error, when incorporated into a large training set, increases overall variance making detection of a
mean shift more difficult.
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6 Discussion

There are several possible mitigation strategies that could be considered to improve the performance of ML-based
algorithms when training on datasets with a safeguards-like error structure (i.e. Equation 1). The traditional statistical
tools for NMA provide better detection probabilities as a result of limited systematic error impact and explicit treatment
of underlying error structure. The first issue, constraining the systematic error at test time, has two potential solutions.
First, a synthetic dataset that is large enough for training but only contains a single set of calibrations could be generated.
However, this would necessitate significant quantities of historical data or a robust process model, both of which could
be challenging. Perhaps more desirable would be to develop a few-shot learning scheme where training is performed
using a smaller dataset. General focus of few-shot learning has been on computer vision tasks, however, some recent
work suggests that few-shot learning could work for regression tasks as well.

The second potential area for improvement is direct incorporation of the measurement error structure. Traditional
statistics for safeguards are able to capture measurement error through prior knowledge and propagation of variance.
However, the error structure of the ML prediction and associated residual is unclear. Estimates of ML variance could
be performed using empirical approaches, but this could require large amounts of data as well. An estimate of the
covariance in the ML residual sequence could enable a SITMUF like transform which would improve performance.

7 Conclusions

This work presented a hypothesis that ML algorithms could learn facility behavior and complex but subtle changes
that might reveal anomalies in order to improve safeguards at large throughput nuclear facilities. Specifically, a neural
network would learn normal facility behavior to predict future measurements. Under abnormal conditions, the neural
network would give poor prediction resulting in high prediction error. As machine learning algorithms often require
large amounts of data, it was assumed that a training dataset would consist of data collected over multiple measurement
campaigns which would lead to higher variances in the training dataset. This increase variance, which makes it more
difficult to detect loss of material, arises from the traditional methods used to train ML algorithms and will persist
regardless of the architecture used and will not be improved by most standard preprocessing techniques.

There remains some promise for ML for NMA if the variance in the training data could be reduced. The most
straightforward approach would be to reduce the size of the training dataset itself using strategies such as few-shot
learning or direct inclusion of the safeguards error structure. This work showed issues relating to variance and training
dataset sizes, but only for deeply parameterized models. Non-parametric approaches could help resolve some of the
shortcomings listed here.
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