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Abstract: Monitoring nuclear facilities is important for nuclear nonproliferation. However, the activi-
ties or events of interest are likely to be sparse and occur under variable conditions. In this work, we
focus on predicting the power level of a nuclear reactor, where only a few observations are available for
the intermediate power levels (10-90%) using data from multiple sensor modalities (seismic, acous-
tic, thermal, electromagnetic, and effluent). These sensors are positioned near a collocated research
nuclear reactor and reprocessing facility at Oak Ridge National Laboratory for the Multi-Informatics
for Nuclear Operations Scenarios (MINOS) venture. While combining data from multiple modalities
offers opportunities for detecting signals that may not be fully captured by any individual modalities, it
also poses a few challenges: 1) Not all of the modalities may provide useful information; 2) A number
of features could be computed for each modality and some of these features may be less informative
or lack robustness across different reactor startups; 3) Often these reactor startups occur in different
environmental conditions which may lead to operation signatures that vary across different startups; 4)
Depending upon the physical phenomenon that each sensor is designed to capture, different machine
learning models may be most effective. In this paper, we present a systematic approach to select data
(including both modality and features) and models to improve prediction of the reactor power level.
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1 Introduction
Monitoring activities at a nuclear facility is important for nuclear nonproliferation. Multi-modal

analysis can help identify signals that may not be fully captured by any individual modality. Machine
learning models can help relate these signals to facility operations. However, the events of interest are
likely to be sparse and occur under variable conditions. In this work, we focus on predicting the power
level of a nuclear reactor, where only a few observations are available for the intermediate power levels
(10-90%) using data from multiple sensor modalities (seismic, acoustic, thermal, electromagnetic,
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and effluent). However, it may be the case that not all of the modalities, or all features extracted from
a modality, provide unique and relevant information for the classification problem. A large number of
features can often be computed for each modality but some of them may not be informative or lack
robustness across different startups. Also, depending upon the physical phenomenon that each sensor
is designed to capture, different machine learning models may be most effective. To address this, we
present a systematic approach to select both data (including modalities and features) and model to
improve reactor power level prediction.

In this paper, focus on predicting the power level of the 85 MW High Flux Isotope Reactor
(HFIR) at Oak Ridge National Laboratory. The reactor is pressurized, beryllium-reflected, cooled and
moderated by light water [6]. HFIR is a flux-trap type reactor that uses highly enriched 235* as fuel
for its 22-26 day cycle [1]. At 2.6 x 1015 neutrons per cm2 per second, it is a world-leading source
for steady-state neutron thermal flux [6]. Currently, HFIR is used for production of a wide range of
medical radioisotopes [3], material irradiation experiments, neutron scattering, and neutron activation
[1]. Four horizontal thermal neutron beam tubes provide neutrons to the neutron scattering instruments
[2]. Co-located with HFIR is the Radiochemical Engineering Development Center (REDC). REDC is
a multipurpose radiochemical processing and research facility that is home to a variety of laboratory
spaces. A key mission supported by REDC is production of radionuclides, including Pu-238 and
Cf-252. Target rods are manufactured at REDC and transferred to HFIR for isotope production. After
irradiation, target rods return to heavily shielded hot cells at REDC where they undergo a series of
dissolution processes to recover isotopes of interest.

2 Multimodal Data
The joint HFIR-REDC complex has been instrumented with a variety of physics-based sensing

modalities under the the Multi-Informatics for Nuclear Operations Scenarios (MINOS) project. Sens-
ing modalities include acoustic, electromagnetic (EM), effluent, seismic, and thermal imagery. Each
modality persistently measures at a sample rate appropriate for the physical phenomena of interest.
Features of the signals, determined with input from subject matter experts, are extracted in time
synced thirty-second windows, with a twenty percent rolling window overlap. Every time window is
treated then as a sample for classification problem. Measurement details and features extracted are
summarized in Table 1. Please refer to [4] for more details on sensors and feature extraction.

3 Methods
3.1 Classification Models

All classifiers used in this work are probabilistic models, and therefore require feature probability
distributions conditioned on power level to estimate the power level of the reactor. Gaussian mixture
models (GMM) are used to compute conditional feature distributions. GMM is a probability density
function that consists of a weighted sum of Gaussian component densities. Please see our previous
work [4] for more details about estimating feature distributions using GMMs.

Based on the number of sensors within a modality, sensor bandwidth, and processing method
relevant for given the physical phenomena, different number of features are calculated for each
modality. For classification purposes, all modalities are weighted equally and within each modality,
all features are weighted equally. We evaluated two classifiers: naïve Bayes and hiddenMarkov model.

Naïve Bayes (NB) is a probabilistic classifier that assumes no temporal dependency among obser-
vations (i.e., they are independent of each other). It uses Bayes theorem with naïve assumption about
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Table 1. Measurements and features of five disparate sensing modalities.
Modality Sensor Feature Summary
Acoustic 3 x IML infrasound sampled at 500 Hz 62 Features

• Time signal statistics
• Spectral content

EM PEARSON 411c current monitor ground
line sampled at 96 kHz

7 Features
• Modulation bands
• Fan speeds of two variable speed fans

Effluent ORTEC Detective 200 High-purity
Geranium measuring a 16384 channel
gamma spectrum sampled at 1 Hz

15 Features
• Isotope count rates

Seismic GeoSpace tri-axial geophone sampled at
500 Hz

49 Features
• Time signal statistics
• Spectral content

Thermal FLIR Ax8 thermal imaging camera sam-
pled at 1/3 Hz

6 Features
• Cooling tower basin gradient temperatures
• Inlet/outlet pipe temperature differential

the independence of features given the class assignment and assigns the observation to the class that
maximizes the probability given the observed feature set.

Hidden Markov model (HMM) [5] is a temporal extension of naïve Bayes classifier. It is used to
model discrete-time stochastic process where the state of the process (which is equivalent to a class)
is hidden but each state or class generates an observation (i.e., a feature set) which is observable. It
make Markov assumption for classes, i.e., the class at time C depends only on the class at time C − 1. In
contrast with NB classifier, HMM takes into account history (a time series of observations) to estimate
power level at any time C. As our previous work [4] showed that HMM with 1 minute of history lead
to the optimal results, we fix the length of history for HMM to 1 minute for this paper. Please see our
previous work [4] for detailed information about the NB and HMM classifiers applied in this study.

3.2 Performance Metric
The multi-class problem posed here is a discretization of a continuous process. Therefore, a

distance-based metric for quantifying performance based on the confusion matrix is appropriate. The
scoring matrix ( is defined as 1 along the diagonal to credit a correct class prediction. Off diagonal
elements of ( are negative, decreasing to -1, applying an increasingly large penalty based on degree
of misclassification distance as shown in Figure 1. Using this scoring matrix we calculate a score for
every cycle holdout as follows:

(2>A4 =
1
=

=∑
8=1

<∑
9=1
�8 9G(8 9

where � is the confusion matrix, = is the number of true classes, and < is the number of predicted
classes. Score can range from 1 (all predictions equal truth) to -1 (all predictions are 100% power
when truth is 0% power and vice versa). This scoring approach is flexible in the credits and penalties
so that a subject matter expert can adjust the score based on appropriate risk for a given scenario.
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Fig. 1. Confusion and scoring matrices.

3.3 Data and Model Selection
In our previous work [4], we evaluated all possible combinations of modalities using NB classifier

and identified top four combinations of modalities that lead to the optimal results. We further
evaluated these four modalities combinations using four classifiers (NB, NB sequential, HMM, and an
ensemble model that combines the predictions from NB, NB Sequential, and HMM) and showed that
irrespective of the models used, a combination of thermal, EM, and effluent modalities leads to the
optimal predictions (average performance across cycles). The results also showed that optimal model
depends upon the modalities chosen (i.e., HMM led to the optimal performance when only thermal,
EM and/or effluent were selected but NB sequential led to the optimal performance when acoustic
modality was included). This suggests a two step approach where in the first step, an optimal set of
modalities is chosen using the simplest model (i.e., NB classifier) and in the second step, based on the
selected modalities, optimal model is chosen.
3.3.1 Interpreting Optimal Modality Combination and Motivation for Data Selection Approach

To understand why thermal, EM, and effluent modality combination leads to optimal performance
in our previous work [4], we started by performing correlation analysis. Our hypothesis is that features
from these modalities are more informative (highly correlated with power level) and robust (have less
variation in correlation with power level across cycles), and these modalities aren’t strongly (or at least
less so than other modalities) correlated with each other. Thus, contributing a unique piece of useful
information for power level prediction.

As Table 2 shows, all of the thermal features are highly correlated with power level (correlation >=
0.7) and also have very low variation in correlation across cycles (i.e., standard deviation of correlation
across cycles is less than 0.1). This suggests that it is useful for power level prediction. This is also
supported by its rank (17/31; highest ranked individual modality) when using naïve Bayes classifier.

Only a small fraction of seismic features are highly (correlation >= 0.7; 6% of features) or
moderately (correlation >= 0.5; 16% of features) correlated with power level (Table 2). This suggests
that seismic data may not be very useful to predict power level. This is also supported by its rank (it
is ranked the last).

EM is the second most correlated modality with power level. However, only 2 out of 7 EM features
have low variation (standard deviation < 0.1) in correlation across cycles (i.e., correlation of most
of EM features with power level varies from cycle-to-cycle) so EM by itself is not very useful for
prediction (ranked 26/31; 4th individual ranked modality when using naïve Bayes classifier). But most
of EM features (26 out of 42 combination of thermal-EM features; 62%) have very low correlation
(< 0.1) with thermal. This suggests that it is contributing some unique piece of information that is
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Criteria Number (fraction) of features meeting criteria
Thermal EM Effluent Acoustic Seismic

Number (fraction) of features 6/6 3/7 3/15 14/62 3/49
highly correlated with (100%) (43%) (20%) (23%) (6%)
power level (avg r>=0.7)

Number (fraction) of features 6/6 7/7 5/15 19/62 8/49
at least moderately correlated (100%) (100%) (33%) (31%) (16%)
with power level (avg r>=0.5)

The number (fraction) of features 6/6 2/7 14/15 26/62 8/49
with low standard deviation (<0.1) (100%) (29%) (93%) (42%) (16%)
of correlation with power level

across cycles
For features that are at least 26/42 23/30 54/114

moderately correlated with power (62%) (77%) (47%)
level, the number (fraction) of
modality-thermal feature pairs

with very low correlation (avg r<0.1)
For features that are at least 35/35 55/133

moderately correlated with power (100%) (41%)
level, the number (fraction) of
modality-EM feature pairs with
very low correlation (avg r<0.1)
NB rank: individual modality 17/31 26/31 18/31 24/31 31/31
NB rank: modality + thermal 3/31 5/31 14/31 21/31

NB rank: modality + thermal + EM 1/31 4/31 10/31
Table 2. Correlation analysis

not captured by thermal. Hence, when combined with thermal, it is quite useful (ranked 3/31; highest
ranked two modality combination when using naïve Bayes classifier).

Effluent and acoustic features have about the same level of correlation with power level (i.e., 31-
33% of effluent and acoustic features are at least moderately correlated with power level). But most of
the effluent features (14 out 15; 93%) have low standard deviation in correlation across different cycles
as compared to acoustic features (26 out 62; 42%) and effluent features are less correlated with thermal
and EM features as compared to acoustic features (Table 2). This suggests that effluent features may
be more useful for prediction as compared to acoustic features. This is also supported by their ranks
when combined with thermal and/or EM.

The above analysis helps explain why a particular set of modalities led to the optimal results using
correlation analysis. However, the correlation thresholds used for this analysis were chosen somewhat
arbitrarily. In this paper, we explore different threshold values for feature and power level correlation
to chose the optimal values of these thresholds in combination with modality selection to select both
optimal set of modalities and features simultaneously in order to improve prediction of the power level.

Limitations: We used pearson correlation for this analysis which measures linear relationships
between variables. There may be informative non-linear relationships between these variables which
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are not captured by our analysis.
3.3.2 Data Selection

We use forward selection algorithm for selecting data (both modality and features). High level
description of this process is as follows: Initially, no modalities are selected and let’s assume average
prediction score across cycles when no modalities are selected is 0. Then, iteratively, a modality
(along with selected features) is added to the list of selected modalities (and features) unless adding a
modality does not improve average prediction score across cycles. The detailed description is below:

At the beginning of iteration 1, as no modalities are selected, we try each modality individually.
For each individual modality, we compute average prediction score across cycles using cross validation
(CV) with no feature selection (i.e., when all features are included) using NB classifier. Next, we try a
number of threshold values for mean and standard deviation (std) of correlation between features and
power level to select features and choose the pair of mean and std threshold values that lead to optimal
performance in terms of average prediction score across cycles using CV. If feature selection improved
results over no feature selection, then we keep track of the optimal threshold values and use them to
extract the optimal set of features for the given modality. Once all individual modalities are evaluated,
we choose the one that leads to best average prediction score along with the selected features and add
it to the list of selected modalities and features.

Suppose, we have data available for five modalities (acoustic, seismic, thermal, EM, and effluent)
and iteration 1 selected thermal as the optimal individual modality with four features. Then, in iteration
2, we try to see if adding any other modality to thermal (with the four selected features) can help
improve average prediction score. Once again, we try adding a modality both without feature selection
and with feature selection (by exploring different threshold values for mean and standard deviation of
correlation between features and power level), and select the modality (along with features) that lead
to the optimal average prediction score and add it to the list of selected modalities and features if it
improves average prediction score across cycles from iteration 1. This process is continued until adding
a modality does not improve average prediction score over previous iteration. As we are evaluating
addition of a modality to a set of already selected modalities in each iteration, it is not necessary to
look at correlation between them. If a new modality does not add new information, adding it will not
improve the average prediction score and it will not be selected.
3.3.3 Model Selection

Once optimal modality and features are selected, we use CV to evaluate all models with these
modalities and features and select the one that leads to the optimal prediction score across cycles.

3.4 Performance Evaluation
As shown in Figure 2, we use nested CV to select optimal data and model and evaluate the

performance of this optimal selection. In =-fold CV, a dataset is divided into = parts (called folds).
Each of = folds are heldout in turn for test purpose and the remaining = − 1 folds are used to train the
model which is then evaluated on the heldout fold. The overall performance of the model is measured
as average performance across = test folds. As there is temporal correlation within a cycle, each fold
consists of a cycle to avoid overfitting. The nested CV here uses two inner CVs. First inner CV is
used to select optimal modalities and features and second inner CV is used to select optimal model
for the selected modalities and features. Finally, the outer CV is used to evaluate the performance of
optimal data and model selected from the inner CV on the heldout cycle.
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Fig. 2. Nested cross-validation for data and model selection and performance evaluation

4 Results
For each heldout cycle, Table 3 shows the optimal set of modalities selected (along with the order

in which they were selected), threshold values of mean and standard deviation of correlation between
features and power level used for optimal feature selection, and the optimal model chosen using the
training data. It also shows prediction score for the heldout cycle as modalities are selected iteratively
using NB classifier and final prediction score with the optimal data (modality and feature) and model.
For three out of the four sets of training data (or folds of outer CV), thermal, EM, and effluent were
selected as optimal modalities which is consistent with our previous results [4] which found the same
modalities as the optimal set followed by thermal, EM, effluent, and acoustic which were selected as
optimal modalities for the remaining set of training data (fold of outer CV). The results also show that
as each modality is added to the set of selected modalities, it significantly improves prediction score
when using NB classifier.

Simultaneous with modality selection, optimal features for individual modalities are selected. The
frequency of features selected is shown in Table 4. For thermal, 50% of features are selected every
cycle, 83% at least two cycles, and 100% at least one cycle. Effluent features are downselected to
include 33% of features every cycle, and 100% of features at least two cycles. EM selects 43% of
features every cycle, 86% at least three cycles, and 100% at least two cycles. Acoustic has the most
significant downselection, eliminating all frequency domain features and selecting only time series
statistics from the three sensors for 18% of features to be selected, but only for one cycle.

Table 3 shows that three times out of four, NB is selected as the optimal model, and HMM is
selected once. In our previous results [4] without feature selection, HMM was often selected as the
optimal model when thermal, EM, and effluent modalities were used. These new results suggest that
with careful feature selection, NB (a simpler model) could outperform HMM.
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Table 3. Optimal Modalities, Model, and Performance
Heldout Selected modalities Mean Std. Score with Optimal Score with
cycle in order of Correlation Correlation optimal data model optimal data

their selection threshold threshold and NB and model
model

484 Thermal None None -0.0702 NB 0.3609
Thermal, Effluent None None 0.1377

Thermal, Effluent, EM None None 0.3609
485A Effluent 0.6 0.1 0.0696 HMM 0.5365

Effluent, Thermal 0.9 0.1 0.5654
Effluent, Thermal, EM 0.5 0.3 0.6441

485B Thermal 0.8 0.2 0.3616 NB 0.5815
Thermal, Effluent None None 0.4908

Thermal, Effluent, EM 0.6 0.3 0.5815
486 Thermal 0.9 0.1 0.0215 NB 0.4318

Thermal, Effluent 0.6 0.2 0.3610
Thermal, Effluent, EM None None 0.3651

Thermal, Effluent, EM, Acoustic 0.9 0.1 0.4318

Table 4. Frequency of features selected.
Modality Number of Cycles Feature is Selected

4 3 2 1
Thermal Basic C, Basin Average, - Basic B, Basin D Basin A

Inlet-Outlet Differential
Effluent 41Ar, 135mXe, 137Xe, - 88Kr, 90Kr, 131I, 132I, 133I,

138Cs, 138Xe - 134I, 135I, 135Xe, 139Ba, 139Xe
EM D, Fan C Speed, Fan D Speed B, C, E A

Acoustic - - - Time series features: RMS,
peak velocity, 90th and 95th percentiles
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Figure 3 shows ground truth and predicted power level using optimal data and model for all four
cycles. The results show that optimal data andmodel selection leads to accurate power level predictions
for cycles 485A, 485B, and 486 (although with a few exceptions). For cycle 486, the predicted power
varies rapidly between 0, 10, and 30% when the reactor is at 10% power hold and between 0, 90,
and 100% when it is at 100% power. This is because the selected optimal model NB does not take
into account temporal dependence among observations. In our previous work, we have shown that by
taking into temporal dependency, HMM was able to help reduce this problem. This suggests that the
selected model (NB) is not actually optimal for cycle 486.

The results also show that the optimal data and model does not lead to correct predictions con-
sistently when the power level is 70% for cycles 485A, 485B, and 486. As explained in our previous
work [4], this is because of a disproportionally large power hold at 70% for cycle 484 as compared to
other cycles and a number of process being tested during cycle 484 (which does not happen usually),
making cycle 484 quite different from the other cycles. This is also the reason why predictions for
cycle 484 aren’t accurate. We believe that having more cycles and/or removing cycle 484 from this
small set of training data could potentially help solve these problems.
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Fig. 3. Ground truth and predicted power level with optimal data and model. Notes: 1) The predicted
power levels are shifted up slightly so that they are not overlayed on top of the ground truth and can

be differentiated easily. 2) X-axis is on different scales for subfigures (a), (b), (c), and (d).
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5 Conclusions
Multiple modalities and machine learning models could help monitor nuclear facilities for non-

proliferation. However, not all modalities (and features) may be informative and depending upon the
physical phenomenon that each sensor is designed to capture, different models may be most effective.
In this work, we focused on predicting the power level of a nuclear reactor using multiple modalities
and presented a systematic approach for selecting both data (modalities and features) and model to
improve prediction. The results show (and match our previous results) that thermal, EM, and effluent
modalities lead to the optimal performance followed by thermal, EM, effluent, and acoustic. The
results also show that by careful feature selection NB model can outperform HMM (an extension of
NB that takes into account temporal dependence of observations). The methodology presented allows
for the optimal model to be determined given all observations available, and has the advantage of easily
updating model optimization as new training sets becomes available. Finally, the approach developed
provides a mean of prioritizing sensing modalities and features for future collection campaigns.
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