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Uncertainty quantification (UQ) for safeguards can be approached from physical first principles 

(“bottom-up”) or approached empirically by comparing measurements from different methods 

and/or laboratories (“top-down”). The two approaches can lead to different estimates of 

uncertainty, often with the bottom-up uncertainty estimate being smaller than the top-down 

uncertainty estimate; such a gap between the estimates is “dark uncertainty.” Currently, one 

component of dark uncertainty in neutron multiplicity measurements arises due to item-specific 

effects, and another arises because uncertainty in nuclear data is ignored. One option to account for 

item-specific effects or for uncertainty in nuclear data is approximate Bayesian computation 

(ABC). This paper reviews ABC and illustrates how ABC can be applied in passive neutron 

multiplicity counting (PNMC) both with and without either item-specific effects or including the 

effects of errors in nuclear data.  As a diagnostic, when an ABC-based interval for the true 

measurement error relative standard deviation (RSD) is constructed to contain approximately 95% 

of the true values, one can check whether the actual coverage is close to 95%. The performance of 

ABC illustrates potential advantages compared to current bottom-up and top-down approaches. 

1. Introduction 

      All measurement data should be accompanied by a measurement uncertainty.  As currently 

implemented, all measurements are characterized, calibrated, and applied using traditional 

analysis tools in a frequentist framework in which the measurand is regarded as a fixed and 

unknown constant while the measurements are regarded as random. In the passive neutron 

multiplicity counting (PNMC) bottom-up example used in this paper [1,2], point model 

multiplicity equations are solved (or inverted) to obtain a Pu mass estimate from three observed 

counting rates (singles (S), doubles (D), and triples (T)) assuming perfect (error free) nuclear data 

parameters, negligible item-specific effects, and error-free determined detector characteristics 

(efficiency and gate factors). A more modern uncertainty quantification (UQ) approach replaces 

the assumptions used in the traditional frequentist approach by a Bayesian framework in which 

both the measurand and the measurements (and even the forward model linking source terms such 

as item masses to measurements) are regarded as random. Bayesian methods are founded in 

probability theory, which is useful for constructing confidence in quantities and conclusions.  

     Historically, Bayesian techniques have been too computationally intensive to apply routinely, 

but this is no longer the case for a large class of practical problems [3-7]. Bayesian approaches can 

incorporate prior knowledge into the analysis in a natural way.  Forward simulation linking physical 

forward model inputs to outputs is also intuitive and natural in the Bayesian paradigm to estimate 

a plausible posterior probability distribution of solutions. Bayesian methods, such as approximate 

Bayesian computation (ABC [1,2,4-7]), easily handle realistic probability density functions (pdfs), 

and so heavy-tailed and/or asymmetric distributions are readily accommodated. Forward modeling 

can create a distribution of plausible solutions as an alternative to algebraic inversion.  This 

distribution of plausible solutions is being further developed both in likelihood-based and 

likelihood-free (ABC) Bayesian approaches for safeguards [1,2,4-7]. The term “approximate” in 

ABC means that an analytical likelihood (such as the normal, Poisson, or other familiar likelihood) 

is not available, but a forward model such as MCNP [8] is available. 



     It is common for the bottom-up approach to UQ to lead to a smaller estimate of errors relative 

standard deviation (RSDs) than the corresponding top-down approach; such a gap between the 

estimates is the so-called “dark uncertainty,” and uncertainty in nuclear data used in the PNMC is 

currently not accounted for in bottom-up UQ and so currently contributes to dark uncertainty. 

Section 2 describes the PNMC. Section 3 describes ABC. Section 4 applies ABC to the PNMC 

with and without nuclear data uncertainty. Section 5 applies ABC to top-down UQ, including 

differences between operator and inspector measurements. Section 6 is a summary. 

2. PNMC 

     The most common summary statistics used in PNMC to infer test item parameters are the so-

called (S, D, T) values [8-14].  Assume that many (𝑁 ≈ 105 or more) short-duration 

(approximately 10-5 sec) counting gates are used, one for each detected neutron; the counts in 

each of the N gates are the foreground (f in the notation below) counts. Each foreground gate also 

opens a random background gate following some time delay, so there are also N background 

gates (b in the notation below). Let Fj denote the number of neutrons detected 

in foreground gate j and let Bj denote the number of neutrons detected in background gate j.  

There are many gating schemes [9-15]; the scheme described here is a common one, in which the 

singles rate S is the rate of detected neutrons minus the rate of detected neutrons in the 

corresponding background measurement. The rate S can be calculated as 𝑓1 − 𝑏1, where 𝑓1 =
1

𝑁
∑ 𝐹𝑗

𝑁
𝑗=1  and 𝑏1 =
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the second order reduced factorial moments [9-15]. 

     Measured S, D, and T values can be used to infer, for example, for point-like Pu mass 

standards, the spontaneous fission (SF) rate 𝐹𝑆, the ratio (denoted 𝛼) of the (𝛼,n) reaction rate to 

the SF rate 𝛼, and sample multiplication 𝑀.   Equations (1)-(3) below can be solved for 𝐹𝑆, 𝛼, 𝑀 

(using auxilliary data, usually by counting 252Cf, to estimate sample/detector efficiency ) [9-15]. 

Another alternative is a version of time interval analysis (TIA) rather than Eqs. (1)-(3), where the 

estimated pdf of the time differences 𝑋𝑖 − 𝑋𝑖−1between successive detected neutrons is used. 

Starting from the “list-mode” data consisting of each neutron detection time, other candidate 

summary statistics (instead of or in addition to S, D, T or 𝑋𝑖 − 𝑋𝑖−1) might be considered for the 

goal of inferring item properties such as 𝐹𝑆 .  Section 2.1 describes the Hage-Cifarelli and Bohnel 

approach; Section 2.2 describes TIA. 

2.1 Hage-Cifarelli and Bohnel approach 

     References [9, 11] showed that under “point model” assumptions, the expected values of S, D, 

and T (moments of the detected neutron distribution) denoted 𝜇𝑆 , 𝜇𝐷 , 𝜇𝑇, respectively are: 

𝜇𝑆 = 𝐹𝑆𝜀𝑀𝜈𝑠1(1 + 𝛼)  (1), 
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     The measured S, D, and T values can be used to infer, for example, for point-like Pu mass 

standards, the SF rate 𝐹𝑆, the ratio (denoted ) of the (,n) reaction rate to the SF rate 𝛼, and 

sample multiplication 𝑀.  The detector neutron efficiency 𝜀 and the doubles and triples gate 

fractions 𝑓𝑑 and 𝑓𝑡 can be estimated from measurements of  252Cf reference neutron sources (that 

also obey the point model assumptions, with = 0, 𝑀 = 1) and then efficiency is updated to the 

one of 240Pu SF, the primary SF isotope in Pu items [1,10]. In addition, background measurements 

with no source items are made to adjust for background for both the Pu items and the 252Cf items.  



      In the 252Cf measurements, assume the only source of SF is 252Cf; in the Pu item 

measurements, assume the only source of SF is Pu. In applying Equations (1-3) to the 

measurements of 252Cf items, M = 1, 𝛼 = 0, both with zero error. The uncertainties in the nuclear 

data are described in [1,16], and then the efficiency  can be estimated. Note that if the value of  

depends on the item, then it could be preferable (have smaller measurement error variance) to 

estimate separately for each item [13]. 

2.2 Time-interval analysis (TIA) 

     The main existing inverse methods use summary statistics such as S, D, T calculated from the 

observed histogram of counts in short randomly-triggered or neutron-triggered gates or both. 

Although TIA is rarely used in safeguards and other nonproliferation tasks, other applications of 

PNMC [12-14] provide an option to use TIA, using the pdf of the time lapse between detected 

neutrons as the summary statistic of the detected neutron times.   

     To apply TIA, a key derivation in [12-14] is Eq. (4) for the pdf of the time between detected 

neutron counts, 

 

𝐼0(𝑡)∆𝑇 = 𝑇𝑒𝑟𝑚1 + 𝑇𝑒𝑟𝑚2                         (4) ,  
 

where 𝑇𝑒𝑟𝑚 1 =  𝑅1𝑟0𝑛0∆𝑇, and 𝑇𝑒𝑟𝑚 2 =  
𝐹𝑆

𝑅1
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𝑁𝑚𝑎𝑥
𝑛=2 (𝜀){∑ 𝑘𝑒−𝑘𝜆𝑇𝑛−1

𝑘=1 }𝑏0(𝑇)𝜆∆𝑇, ∆𝑇 is a 

small time interval such that 𝐼0(𝑡)∆𝑇 can be regarded as an approximation of the integral 

∫ 𝐼0(𝑡)𝑑𝑡
𝑡+∆𝑇

𝑡
, 𝑅1 = 𝜀𝑞𝑀𝜐̅𝑆𝐹𝑆 is the count rate, 𝐹𝑆 is the SF rate, M is the sample multiplication, 

𝑞 = 1 − 𝑝𝐼𝐹 where 𝑝𝐼𝐹is the probability that a neutron induces fission (IF), and 𝜐̅𝑆 is the average 

number of neutrons emitted per SF.   The probability to detect n neutrons from a fission chain is 

𝑒𝑛 = ∑ 𝑃𝜐
∞
𝜈=𝑛 (

𝜈
𝑛

) 𝜀𝑛(1 − 𝜀)𝜈−𝑛, where 𝜀 is the probability that a neutron is detected (the overall 

detection efficiency). The term 𝑟0 is the probability that no neutrons are detected within a time T 

of the initial neutron trigger in a chain. The term 𝑏0 is the probability that no neutrons are 

detected within a random time interval T. The term n0 = r0b0. The 𝑃𝜐 values are probability of 

emitting ν neutron from the fission and 𝜆 is the inverse of the die-away time. The point model 

assumes only one neutron energy group, and so also assumes there is only one probability of 

inducted fission. A two-energy model allows for differing neutron energies arising, for example 

due to having a large fraction of (,n) neutrons compared to SF neutrons. 

     Fig. 1a is the pdf (on loge = ln scale) for successive differences 𝑋𝑖 − 𝑋𝑖−1in neutron detection 

times for a simulated example that use either one or two neutron energy groups. Fig. 1b is the 

ABC-based posterior distribution for one real item based on using either one or two energy 

groups. The statistical programming language R [17] is used for all analyses; see Section 3. 

      Some neutrons arrive in “chains,” in which the neutron birth times are essentially all the same 

(for the initiating neutron(s) and the neutrons from induced fissions). Therefore, some of the 𝑋𝑖 −
𝑋𝑖−1 time differences tend to be small (as in the small peak in the estimated pdf at approximately 

10-7 sec), arising mostly from the time to slow down and then detect both neutrons. Even if there 

is no induced fission, there can be multiple neutrons released in SF, so there are bursts of 

neutrons as seen by the pdf of ln(𝑋𝑖 − 𝑋𝑖−1) in Fig.1a. 

3. ABC 

     In any Bayesian approach, prior information regarding the magnitudes or relative magnitudes 

of  any model parameter(s) can be provided. If the prior is “conjugate” for the likelihood, then the 

posterior is in the same likelihood family as the prior, in which case analytical methods are 

available to compute posterior prediction intervals for quantities of interest.  So that a wide 

 



 
                                 (a)                                                 (b) 

Fig. 1.  (a) The pdf of log( 𝑋𝑖 − 𝑋𝑖−1)with one and two energy groups. (b) ABC-based estimate 

of the posterior pdf using one energy group and two energy groups for real item for which the 

Hage-Cifarelli approach gives an estimate of 0.56 to 0.58 g (the nominal value is 0.56 gm, and 

the α rate is approximately 6, which is quite large). The posterior is wider (and also shifted lower) 

when the forward model assumes two energy groups (approximately 2% RSD compared to 1% 

RSD for one energy group). Some of the dark uncertainty is exposed. 

 

variety of priors and likelihoods can be accommodated, modern Bayesian methods do not rely on 

conjugate priors, but use numerical methods to obtain samples from approximate posterior 

distributions [3]. For numerical methods such as Markov Chain Monte Carlo (MCMC) [3], the 

user specifies a prior distribution (which need not be normal), for the parameters to be inferred, 

such as  FS, , M and a likelihood for (S, D, T) (see [1]) or for 𝑋𝑖 − 𝑋𝑖−1 ([1,2,4]) . In contrast, 

ABC does not require a likelihood for the data; and, as in any Bayesian approach, ABC 

accommodates constraints on variances through prior distributions [1,2,4-7].  

     ABC is ideally suited for extending PNMC to items that violate the point-model assumptions. 

The “output” of any Bayesian analysis is the posterior distribution for each model parameter, and 

so the output of ABC for data generated assuming that S, D, T have mean values given in 

Equations 1-3, and a multivariate normal covariance that is estimated from data [1,2].  Or, if TIA 

is used, then Eq. (4) can be used as the likelihood to estimate the posterior probabilities for FS, , 

M. ABC is also well suited for comparing the posterior width for different choices of summary 

statistics. Posterior width can be used to make a data-driven decision whether an item has been 

counted for a long enough time. 

     A well-calibrated Bayesian approach is an approach that satisfies several requirements. 

Requirement (1) is that in repeated applications of ABC, approximately 95% of the middle 95% 

of the posterior distribution for FS (for example) should contain the true value. That is, the actual 

coverage should be closely approximated by the nominal coverage.  The nominal coverage is 

obtained by using the quantiles of the estimated posterior. For example, the 0.005 and 0.995 

quantiles define the lower and upper limits of a 99% probability interval. Requirement (2) is that 

the true mean squared error (MSE) of the ABC-based estimate of FS should be closely 

approximated by the variance of the ABC-based posterior distribution of FS. For data such as that 

simulated in Figure 1, using 𝜀 = 0.01, both requirements (1) and (2) are met [2]. 

     Inference using ABC can be summarized as follows. For i in 1, 2, …, N, do these 3 steps: (1) 
Sample  from the prior,(2) Simulate data  from the model 𝑥" ~ 𝑃(𝜃|𝑥) , (3) Denote the 
real data as x . If distance 𝑑(𝑆(𝑥′), 𝑆(𝑋)) ≤ 𝜀  then accept 𝜃 from 𝑓𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜃|𝑥). Experience 

with ABC suggests that the ABC approximation to 𝑓𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 (𝜃|𝑥) improves if step (3) is 

modified to include a weighting factor, so that trial values of 𝜃 simulated from 𝑓𝑝𝑟𝑖𝑜𝑟(𝜃) that 

lead to very small distance 𝑑(𝑆(𝑥′), 𝑆(𝑥)) are more heavily weighted in the estimated posterior 

[6,7]. In step (2), the model can be analytical or any forward model. The model in this paper has 

input parameters 𝜃={𝛼, 𝑀, 𝐹𝑠}, has output data 𝑥′~𝑃(𝑥|𝜃), and there is corresponding real data 

xobs. In the Hage-Cifarelli approach, the model is Eqs. (1-3), plus specification of the distribution 

of S, D, T given 𝜇𝑆, 𝜇𝐷, 𝜇𝑇 (multivariate normal; see [1]). 



     Eqs. (1-3) specify how to generate synthetic S, D, T data, and Eq. (4) specifies how to generate 

synthetic 𝑋𝑖 − 𝑋𝑖−1 data, but ABC does not require one to explicitly specify a likelihood. So, the 

true likelihood used to generate the data need not be known to the user. Synthetic data is 

generated from the model for many trial values of 𝜃={𝛼, 𝑀, 𝐹𝑠} (with or without including the 

effects of errors in nuclear data [1-3]), and trial 𝜃 values are accepted as contributing to the 

estimated posterior distribution for 𝜃| xobs if the distance between obsx and is 

reasonably small. Alternatively, for most applications, it is necessary to reduce the dimension of 

xobs to a small set of summary statistics 𝜃 and accept trial values of 𝜃 if 𝑑(𝑆(𝑥𝑜𝑏𝑠), 𝑆(𝑥(𝜃))) <

𝜀, where 𝜀 is a user-chosen threshold (not the efficiency parameter in NMC). Here, for example, 

𝑥𝑜𝑏𝑠= S, D, T (adjusted for the background data) or is a histogram-based summary of the pdf of 

ln(𝑋𝑖 − 𝑋𝑖−1). 

     Recall that, because trial values of 𝜃 are accepted if  𝑑(𝑆(𝑥𝑜𝑏𝑠), 𝑆(𝑥(𝜃))) < 𝜀 , an 

approximation error to the posterior distribution arises that several ABC options attempt to 

mitigate. Additionally, recall that such options weight the accepted 𝜃 values by the actual distance 

𝑑(𝑆(𝑥𝑜𝑏𝑠), 𝑆(𝑥(𝜃))) (abctools package in R [17]). In practice, the true posterior distribution is not 

known, so a method such as that in [5] using the calibration checks described above, is needed in 

order to choose an effective value of the threshold . 

     ABC can evaluate candidate summary statistics.   The estimated distribution of plausible 

nuclear material mass values (or, for example, 𝛼, 𝑀, 𝐹s values) can be assessed by checking at 

least the two calibration requirements listed previously. ABC is used here for two main reasons:  

A) many real items are non point-like and violate point-model assumptions to varying 

extents (such as a single energy-independent efficiency and a single multiplication), but 

ABC can be used with realistic forward models with or without an explicit likelihood [2] 

with and without errors in nuclear data, and 

B) ABC allows comparison of the performance of candidate summary statistics such as S, D, 

T; the histogram of detected numbers of neutrons in gates, the pdf of 𝑋𝑖 − 𝑋𝑖−1; and the 

pdf of 𝑋𝑖 − 𝑋𝑖−2.  
4. Item-specific Bias in NMC  
     ABC was implemented using either of 4 cases: : (1) point model, (2) point model but two 

energy groups, (3) point model but dead time effects resulting in approximately 15% loss of 

counts, and (4) point model but two energy groups and dead time losses of approximately 15%. 

The 2-group model assumes two groups of neutron energies, resulting in two probabilities of 

induced fission.  

     Choice A for summary statistics was  {S, D, T}. Choice B for summary statistics was 13 bins 

of a histogram-based summary of the pdf for log( 𝑋𝑖 − 𝑋𝑖−1).  Recall that ABC s users to 

experiment with candidate summary statistics. ABC results for choice A will be summarized 

here. A separate training set of 104 ABC simulations was computed for each of the 4 cases.             

The two main calibration checks for ABC indicated good calibration, so the ABC-based posterior 

is a good approximation. Figure 2 plots the ABC-based posterior pdf for a simulated test case that 

had a true SF rate of 258.2 for each of 4 training sets, one for each of the 4 cases.  Note that 

258.2/475.3 = 0.54 gms, where 475.3 is the number of fissions per gm per second, the specific SF 

rate of Pu.  As expected, the true value of 0.54 is within  the middle of the posterior pdf for case 1 

(with a mean of 0.55 and standard deviation of 0.01). However, the true value of 0.54 is not 

within the middle of the posterior pdf for cases 2, 3, or 4, (with means 0.59, 0.57,  0.59  and 

standard deviations 0.01, 0.01, and 0.005, respectively) which indicates non-negligible departure 

from the point model.   ABC results for choice B were more dependent on how many bins were 

used in the histogram-based summary of the pdf for log( 𝑋𝑖 − 𝑋𝑖−1).  Interestingly, the item-

specific biases shifted from being positive when using choice A (0.59, 0.57, and 0.59 are all a few 

multiple of the posterior standard deviation of 0.01 above the true value of 0.54) to negative for 



choice B, also by a few multiples of the posterior standard deviation, which was also 

approximately 0.01 in all four cases. ABC performed will in the two main calibration checks so 

the posterior pdfs are good approximation. 

 
Fig. 2. The ABC-based posterior pdf for a simulated test case with true mass 0.54 gms for each of 

4 training sets, one for each of the 4 cases using S, D, T (choice A summary statistics). The 

simulated test case obeyed the point model (case 1); the other 3 cases had point model violations. 

 

     Another check that ABC is well calibrated is to match the simulated test case with the 
corresponding training data (as in Fig. 2 with case 1, the point model for which the 
posterior includes the true mass of 0.54 gms).  In this example in Fig. 3, when the test case 
was simulated using the same model (case 1, 2, 3, or 4 model) as the 104 simulated training 
observations, then the resulting posteriors all easily include the true value of 0.54 gms, all 
with mean values of approximately 0.55 and standard deviations of approximately 0.01. 

 
Fig. 3. The ABC-based posterior pdf for a simulated test case that had a true mass of 0.54 
gms for each of 4 training sets, one for each of the 4 cases. The simulated test case obeyed 
the point model (case 1), and the other 3 cases had point model violations, but the 
simulated training observations used by ABC matched those of the corresponding test case, 
so this is a calibration check on ABC using S, D, T (choice A summary statistics). 

 

4. Application of ABC to top-down UQ 

     Section 4 illustrates ABC in three top-down analyses.  

4.1 Normal data with unknown mean and known variance 

     In this example the scalar-valued data has an unknown mean value 𝜇, and conditional on  𝜇  it 

is assumed that X has a normal distribution with mean 𝜇 and variance 𝜎𝑥
2, denoted 

𝑋|𝜇 ~ 𝑁(𝜇, 𝜎𝑥
2).  The unknown mean 𝜇 is assigned a prior 𝜇 ~ 𝑁(0, 𝜎𝑝𝑟𝑖𝑜𝑟

2 ) , where  𝜎𝑝𝑟𝑖𝑜𝑟
2  can be 

large if little is known about 𝜇 prior to collecting data. Because the mean of 𝜇 is zero, X could be 

difference data, such as the difference between a measured and declared value. The normal prior 

for 𝜇 is conjugate for the normal likelihood for X, so the resulting posterior is also normal, 



𝜇|𝑥 ~ 𝑁(𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 , 𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2 )  where 𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝜏𝜎𝑥

2   and 𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2 = 𝜏𝜎𝑥

2   where 𝜏 =
𝜎𝑝𝑟𝑖𝑜𝑟

2

𝜎𝑝𝑟𝑖𝑜𝑟
2 +𝜎𝑥

2  and 𝜇 ~ 𝑁(0, 𝜎𝑝𝑟𝑖𝑜𝑟
2 )  and 𝑋|𝜇 ~ 𝑁(𝜇, 𝜎𝑥

2) . Because the posterior is known exactly [3], 

it is possible to assess how well ABC works in this example. Fig. 4 plots the ABC-based posterior 

using 𝜀 = 0.001, 0.01, 0.1 using one observation of X as the data (and summary startstic). The 

true posterior is also shown. 

 

 
Fig. 4.  The posterior pdf for Example 4.1 with known variance and normal data. 

   

     Regarding the two calibration requirements, the true posterior standard deviation is √𝜏 =
0.71, and the estimated RMSE is 0.72 using 𝜀 = 0.001, 0.01, or  0.1. And the actual 90%, 95%, 

and 99% coverages are 0.99, 0.95, 0.90 for 𝜀 = 0.01 or  0.1 and 0.97, 0.93, 0.89 for 𝜀 = 0.001. 
Figure 5 plots the actual PI coverage probability versus the nominal PI coverage probability 

(using quantiles of the posterior) for 𝜀 = 0.01. Clearly, ABC is well calibrated. 

 

 
Fig. 5. ABC calibration check for Example 4.1 with known variance and normal data. 

 

4.2 Normal data with unknown mean and unknown variance 

     Example 4.2 is the same as Example 4.1, but the mean 𝜇 and variance 𝜎𝑥
2 are unknown [3]. 

One way to specify the conjugate prior specifies an inverse gamma prior Invgamma(𝛼, 𝛽), for 𝜎𝑥
2, 

𝛽𝛼

Γ(𝛼)
𝑥−𝛼−1𝑒

−𝛽

𝑥  (with x denoting the possible values of 𝜎𝑥
2). Conditional on 𝜎𝑥

2, 𝜇|𝜎𝑥
2~𝑁(0, 𝜈𝜎2)  

and  𝑋|𝜇 ~ 𝑁(𝜇, 𝜎𝑥
2). The parameter 𝜈 can be related to an effective degrees of freedom in the 

prior information. The resulting posterior is also normal for 𝜇, and is 

gamma(𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 , 𝛽𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ) for 𝜎𝑥
2, where 𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝛼 + 𝑛, 𝛽𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝛽 +

1

2
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1  and the data are 𝑥1, 𝑥2, … , 𝑥𝑛 As in Example 4.1, the posterior is known exactly, 

so it is possible to assess how well ABC works. Figure 6 plots the ABC-based posterior of 

𝜎𝑥  using 𝜀 = 0.001, 0.01, 0.1 using the sample mean and variance of    n =5 observations of X as 

the data (and summary statistic). The true posterior is also shown. Regarding the two calibration 



requirements, for 𝜀 = 0.01, the predicted RMSE is 0.29 and the observed average standard 

deviation is 0.31, and the actual PI coverages are 0.99, 0.96, 0.91 (nominal are 0.99, 0.95, 0.90). 

 
Fig. 6.  The ABC-based posterior of 𝜎𝑥 . 
 

4.3 Operator – Inspector Data 

     The error model used in the IAEA’s statistical methodologies for safeguards sets the stage for 

applying one-way analysis of variance (ANOVA) with random effects [18-21]. The error model 

accounts for variation within and between groups, where a group is, for example, a calibration or 

inspection period. A typical model for multiplicative errors for the inspector (I) is 

𝐼𝑗𝑘 = 𝜇𝑘(1 + 𝑆𝐼𝑗 + 𝑅𝐼𝑗𝑘), (5) 

where 𝐼𝑗𝑘 is the inspector’s measured value of item 𝑘, 𝜇𝑘 is the true but unknown value of item k, 

𝑆𝐼𝐽~𝑁(0, 𝛿𝑆𝐼
2 ) is a short-term systematic error in inspection period j, 𝑅𝐼𝑗𝑘~𝑁(0, 𝛿𝑅𝐼

2 ) is a random 

error of item 𝑘, and the variance of  𝐼𝑗𝑘  is  𝜎𝐼
2 ≈ 𝜇𝑘

2(𝛿𝜇
2 + 𝛿𝑆𝐼

2 + 𝛿𝑅𝐼
2 ), where the item variability 

𝛿𝜇
2 is the relative variance of the of random variable 𝜇𝑘 (the true item values).  The 𝛿 symbol 

denotes a relative standard deviation and the 𝜎 symbol denotes an absolute standard deviation. 

Figure 7 plots n = 10 (O-I)/O simulated values for each of g = 5 groups with parameters 𝛿𝑆𝑂 =
0.001, 𝛿𝑅𝑂 =0.001, , 𝛿𝑆𝐼 = 0.027, 𝛿𝑅𝐼 = 0.027 , 𝛿𝜇 = 0.003. 

 

 
 

Fig. 7. Ten simulated values of (O-I)/O  for each of g = 5 groups. 

 

     One-way ANOVA based on paired data allows us to estimate the measurement error variances 

of plant operators and inspectors. ANOVA requires the data to fall in groups, so that within-group 

and between-groups variances can be defined and estimated. In this example, the groups are the 

inspection periods.  The basis of a Grubbs-based estimator [3-6,22] as applied to data assumed be 

generated according to Eq. (5) in order to estimate 𝛿𝑅𝐼
2  (all five terms 𝛿𝜇

2, 𝛿𝑆𝐼
2 , 𝛿𝑅𝐼

2 , 𝛿𝑆𝑂
2 , 𝛿𝑅𝑂

2  can be 

estimated but for brevity here, the example considers estimating 𝛿𝑅𝐼
2 ) is that the covariance 

between operator and inspector equals 𝜎𝜇
2, while the variance 𝜎𝐼

2conditional on the value of 𝑆𝐼𝑗  is 

given by 𝜎𝐼
2 = 𝜇𝑖

2(𝛿𝜇
2𝛿𝑅𝐼

2 + 𝛿𝜇
2(1 + 𝑆)2+ 𝛿𝑅𝐼

2 ), which has an expected value over inspection 



periods of 𝜇𝑖
2(𝛿𝜇

2𝛿𝑅𝐼
2 + 𝛿𝜇

2(1 + 𝛿𝑆𝐼
2 )+ 𝛿𝑅𝐼

2 ).  Therefore, the expected between-group and within-

group sums of squares involve both 𝛿𝑆𝐼
2  and 𝛿𝑅𝐼

2 . Provided 𝛿𝑆𝐼, 𝛿𝑅𝐼, and 𝛿𝜇are each less than 

approximately 0.20, the approximation 𝜎𝐼
2 ≈ 𝜇𝑖

2(𝛿𝜇
2 +  𝛿𝑅𝐼

2 ) is adequate, so that the sample 

covariance between operator and inspector measurements can be subtracted from the sample 

variance of the operator measurements to estimate 𝛿𝑅𝐼
2  (and similarly for estimating  𝛿𝑅𝑂

2 ). That is, 

within a single inspection period (group) (lower-case i (o) for numerical values of I (O)), an 

effective estimate of  𝛿𝑅𝐼
2  is (with 𝑜̅ used to estimate the average true value 𝜇) 

 

𝛿̂𝑅𝐼
2 =

1

𝑜̅2(𝑛−1)
{ ∑ (𝑖𝑗 − 𝑖)̅2 − ∑ (𝑜𝑗 − 𝑜̅)(𝑖𝑗 − 𝑖)̅𝑛

𝑗=1
𝑛
𝑗=1 }   (6). 

 

      The original Grubbs’ estimate [22-24] is for additive error models. The ABC framework [1, 

4,23,24] makes Grubbs’ type estimation straightforward for either additive or multiplicative 

models. The five summary statistics used in this application of ABC for n (O,I) pairs in each of g 

groups are the average over g groups of the estimates{𝛿̂𝜇
2 =

∑ (𝑜𝑗−𝑜̅)(𝑖𝑗−𝑖)̅𝑛
𝑗=1

(𝑛−1)𝑜̅2  , 𝛿̂𝑅𝐼
2 ,𝛿̂𝑅𝑂

2 } and 

{
∑ (𝐼𝑗̅−𝐼)̅2𝑔

𝑖=1

(𝑔−1)𝑜̅2 −
𝛿̂𝜇

2

𝑛
−

𝛿̂𝑅𝐼
2

𝑛
,

∑ (𝑜𝑖−𝑜̅)2𝑔
𝑖=1

(𝑔−1)𝑜̅2 −
𝛿̂𝜇

2

𝑛
−

𝛿̂𝑅𝑂
2

𝑛
}. Note that 𝜎𝐼

2 = 𝜇𝑖
2(𝛿𝜇

2 + 𝛿𝑅𝐼
2 + 𝛿𝑆𝐼

2 ) so the 

variance of the between group means (equal sample size with n observations per group) is 

𝜎𝐵etween,𝐼
2 = 𝜇𝑖

2(
𝛿𝜇

2

𝑛
+

𝛿𝑅𝐼
2

𝑛
+𝛿𝑆𝐼

2 ), which is the basis for the fourth and fifth summary statistics.  

     As an example, Figure 8 plots the ABC-based posterior pdf for 𝛿𝑅𝐼 using 𝜀 =
0.001, 0.02, 0.1.  Regarding the two calibration requirements, for 𝜀 = 0.005, 0.01 or 0.1, the 

predicted RMSE is 0.027 and the observed average standard deviation is 0.028, and the actual 

PI coverages are 0.99, 0.96, 0.91 (nominal are 0.99, 0.95, 0.90). However, if 𝜀 = 0.001 then 

outliers impact the posterior mean leading to poor calibration. 

 

 
Fig. 8. The posterior pdf for Grubbs’-like estimation of 𝛿𝑅𝐼. The posterior mean is 0.023 and the 

true value of 𝛿𝑅𝐼  is 0.027. The threshold 𝜀 = 0.001 does not lead to well-calibrated ABC. 

 

5. Summary 

     This paper reviewed material from recent papers that have implemented ABC for safeguards 

measurent UQ, both bottom-up and top-down.  The new emphasis in this paper is a strategy to 

assess whether ABC is well calibrated. In this context, well calibrated means that at least two key 

properties are met by the ABC-based estimate of posterior pdfs for parameters such as an item’s 

SF rate 𝐹𝑆 or mass. Property 1 is whether the posterior width as measured by the posterior 

standard deviation provides a good estimate of the root mean squared error of the estimate (and 

the estimate is the posterior mean). Property 2 is whether quantiles of the posterior such as those 

based on 90%, 95%, and 99% PIs actually lead to PI coverages of approximately 90%, 95%, and 

99%, respectively. Because of the simulation-based nature of ABC, is it straightforward to assess 



whether properties 1 and 2 are approximately met. In all examples presented, ABC is well 

calibrated, provided the acceptance threshold 𝜀 is chosen appropriately. 
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