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Abstract 

The IAEA uses random inspections (RIs) to, inter alia, provide credible assurance that declared nuclear 

facilities are not used for undeclared purposes. These inspections are random in the sense that they are 

scheduled randomly in date and time, with short notice given to the inspected site. The IAEA has interest 

in employing statistical models for RI planning that take advantage of any potential efficiency gains 

while maintaining a high level of effectiveness. 

This paper first introduces the model parameters that are necessary for a quantitative analysis of RI 

models for misuse inspections (subsequently referred to as RI models) and discusses their importance. 

Then, using the model parameters, the set of all RI models is introduced, and three example RI models 

are presented. Next, for any RI model the probability is derived that any facility is selected at least once 

per year for an RI, and – regarding the objective of an RI – the probability that a misuse is detected 

within 𝑇 days after its start, where the parameter 𝑇 is the duration of misuse signatures at the facility. 

Next, the question is addressed which RI model should be chosen for RI planning: If no further 

constraints from the IAEA are imposed on the RI models (e.g., maximum unpredictability of the number 

of RIs in each year, resource constraints leading to an upper number of RIs, etc.), then the RI model that 

maximizes the achieved detection probability for a given set of input parameters should be selected. 

This maximization problem, however, is by no means trivial, because the maximization is performed 

over a set of RI models and not over a subset of real numbers. 

Finally, the functionality and features of the software prototype TRIPS (Tool for Random Inspection 

Planning in Safeguards) are demonstrated, and future work topics are highlighted. 

 

Keywords: Random Inspection Model, Detection Probability, Indicator Time Signature, Tool for 

Random Inspection Planning in Safeguards (TRIPS) 

 

1 Introduction and Motivation 

The IAEA uses random inspections (RIs) to, inter alia, provide credible assurance that declared nuclear 

facilities are not used for undeclared purposes. An effective and efficient planning regime for scheduling 

RIs and evaluation of achieved selection (and potentially detection) probabilities represents an important 

building block in developing State-level safeguards approaches (SLA) under the State-level Concept 

(SLC). These inspections are random in the sense that they are scheduled randomly in date and time, 

with short notice given to the inspected site; see [1]. While RIs can also be performed to detect the 
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diversion from declared material, the focus in this paper lies on the detection of misuse in declared 

facilities. Examples include undeclared reprocessing of spent fuel in a declared reprocessing plant, 

undeclared enrichment in a declared enrichment facility, irradiation of targets in a research reactor, 

fabrication of targets in a fabrication plant, or undeclared feed in a conversion plant. 

An RI model for misuse inspections is a process for sampling random inspection dates. For brevity this 

paper will use the term RI model always implying misuse inspections. The aim of this paper is to describe 

the basic framework for RI models and to formalize, with demonstration, the objectives of RIs. The 

formal objectives can be used to identify RI models that take advantage of any potential efficiency gains 

while maintaining a high level of effectiveness.  

The paper is organized as follows: Section 2 introduces model/input parameters necessary to perform a 

quantitative analysis of RI models and discusses three RI models. In Section 3, the objectives of RIs are 

formalized and the general equations of the selection as well as the detection probability are determined. 

Furthermore, an example scenario is discussed followed by a discussion on RI model selection. Section 

4 briefly introduces the Tool for Random Inspection Planning in Safeguards (TRIPS). Conclusions and 

future work are highlighted in Section 5. 

2 Random inspection models 

This section introduces 1) the initial situation and the model parameters necessary to perform a 

quantitative analysis of RI models, 2) the set of RI models, and 3) presents three examples of RI models 

with a discussion of their respective (dis)advantages. 

2.1 Model/input parameters and the set of RI models 

The initial situation is as follows: A population of similar facilities in a state is safeguarded against 

misuse using an RI scheme. If one of these facilities were misused, detectable evidence of this misuse 

is only present for a finite duration 𝑇. In other words, this situation models transient signatures; persistent 

signatures are not considered here. 

For the RI model, a reference time interval (e.g., one year) is considered that is subdivided into 𝑁 days 

1,… ,𝑁 at which an RI can be performed; see Figure 1. Also, it is assumed that an RI can be scheduled 

on any day, i.e., there are no gaps in the timeline and there might be RIs also at weekends and national 

holidays. This assumption is essential for the derivation of the RI detection probability. 

 

Figure 1: Timeline. 

The model/input parameters for the RI models are as follows (see [2] and [3]): Let 𝑁 be the number of 

discrete opportunities at which an RI can be performed during the reference period, usually 365 (days); 

let 𝑛 be number of facilities in the State to which the RI scheme is applied; let 𝑘, 𝑘 = 0,1,… ,𝑁 − 1, be 

the minimum number of RIs to be performed; let 𝜇, 𝑘 < 𝜇 < 𝑁, be the expected number of RIs (𝜇 can 

be a rational number); let 𝑝𝑖𝑑 be the probability that a single inspection identifies misuse, given that it 

occurs at the misusing facility while indicators exist; and let 𝑇, 𝑇 < 𝑁, be the indicators’ duration, i.e., 

the number of discrete opportunities at which the misuse can be detected (measured in the same unit as 

𝑁). 

Note that a reliable estimate of 𝑝𝑖𝑑 and 𝑇 must be provided by experts. The software prototype discussed 

in Section 4 includes functionality to estimate the model sensitivity to these parameters. 
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2.2 The set of RI models 

To formalize the way inspection days are chosen, we introduce the set 𝑋 of RI models. Let the tuple 

(𝑖1, 𝑖2, … , 𝑖𝑁) ∈ {0,1}
𝑁 denote the inspections days: 𝑖𝑗 = 1 indicates that at day 𝑗 an RI is performed and 

𝑖𝑗 = 0 indicates that at day 𝑗 no RI is performed. If 𝑝(𝑖1,𝑖2,…,𝑖𝑁) denotes the probability that the inspection 

days (𝑖1, 𝑖2, … , 𝑖𝑁) are chosen, then the set 𝑋 of RI models is 

𝑋 ≔ {𝒑 ∈ [0,1]2
𝑁
∶  𝑝(𝑖1,𝑖2,…,𝑖𝑁) = 0 for all (𝑖1, 𝑖2, … , 𝑖𝑁) ∈ {0,1}

𝑁 with ∑𝑖𝑗

𝑁

𝑗=1

< 𝑘

                           ∑ 𝑝(𝑖1,𝑖2,…,𝑖𝑁)

 

(𝑖1,𝑖2,…,𝑖𝑁)∈{0,1}
𝑁

= 1 and ∑ 𝑝(𝑖1,𝑖2,…,𝑖𝑁)  ∑ 𝑖𝑗

𝑁

𝑗=1

 

(𝑖1,𝑖2,…,𝑖𝑁)∈{0,1}
𝑁

= 𝜇} .

 (1) 

Three comments on Eq. (1): The sum in the first line is because at least 𝑘 RIs must be performed. The 

first equation in the second line is because 𝑝(𝑖1,𝑖2,…,𝑖𝑁) are probabilities, and the second equation in the 

second line formalizes the requirement that the expected number of RIs is 𝜇. Note that set 𝑋 contains RI 

models with the property ℙ(number of RIs = 𝑘) = 0; see RI model 1. 

The set 𝑋 contains uncountably many RI models, three of them are presented in the following for 

illustration. Note that they are not meant to reflect a particular choice of model by the IAEA. Also note 

that we leave it to the reader to show that the RI models specified in Eqs. (2)–(4) indeed belong to the 

set 𝑋. 

Example: RI model 1 

An RI model with a high predictability of the number of RIs concentrates this number around 𝜇, so that 

only tuples (𝑖1, 𝑖2, … , 𝑖𝑁) ∈ {0,1}
𝑁 with exactly2 ⌊𝜇⌋ or exactly ⌊𝜇⌋ + 1 RIs (indicated by elements equal 

to "1") have a nonzero probability: 

𝑝(𝑖1,𝑖2,…,𝑖𝑁) =

{
 
 
 

 
 
 

 

1 + ⌊𝜇⌋ − 𝜇

(
𝑁
⌊𝜇⌋
)

for ∑𝑖𝑗

𝑁

𝑗=1

= ⌊𝜇⌋

𝜇 − ⌊𝜇⌋

(
𝑁

⌊𝜇⌋ + 1
)

for ∑𝑖𝑗

𝑁

𝑗=1

= ⌊𝜇⌋ + 1

0 else  

 .  (2) 

In this RI model resource planning is easy because only ⌊𝜇⌋ or ⌊𝜇⌋ + 1 RIs are performed. If 𝜇 is an 

integer, then 𝜇 = ⌊𝜇⌋ and Eq. (2) reduces to a uniform distribution with equal probability (
𝑁
𝜇
)
−1

 over 

the set of all (𝑖1, 𝑖2, … , 𝑖𝑁) ∈ {0,1}
𝑁 with exactly 𝜇 RIs. Note Eq. (2) is independent of 𝑘. Thus, all RI 

models with a minimum number of 0,1,… , ⌊𝜇⌋ − 1 RIs have the same probabilities as in Eq. (2). Also 

note that ℙ(number of RIs = 𝑘) = 0 for 𝑘 < ⌊𝜇⌋. 

Example: RI model 2 

The inspection days in this RI model are generated as follows: 

1. For any day 𝑑, 𝑑 = 1,… ,𝑁, an RI is scheduled with probability 𝑝 (𝑝 ∈ (0,1]) independently of the 

history, i.e., independently of the RIs scheduled for days 1,… , 𝑑 − 1 (for 𝑑 > 1). No RI is 

scheduled for day 𝑑 with probability 1 − 𝑝 (Bernoulli trial, coin toss). 

 
2 The floor function ⌊𝜇⌋ maps 𝜇 to the greatest integer less than or equal to 𝜇. 



Proceedings of the INMM & ESARDA Joint Virtual Annual Meeting, August 23-26, August 30-September 1, 2021 

4 

2. If the total number of RIs is larger or equal to 𝑘, then use the inspection days generated in Step 1. 

Otherwise, start again with Step 1. If 𝑘 = 0, then Step 2 is omitted. 

Using the binomial distribution (see [4] or [5]), the probability 𝑝(𝑖1,𝑖2,…,𝑖𝑁) that the inspection days 

(𝑖1, 𝑖2, … , 𝑖𝑁) are chosen is given by 

𝑝(𝑖1,𝑖2,…,𝑖𝑁) =

{
  
 

  
 

 

𝑝ℓ(1 − 𝑝)𝑁−ℓ

1 − ∑ (
𝑁
𝑗
) 𝑝𝑗(1 − 𝑝)𝑁−𝑗𝑘−1

𝑗=0

for ℓ =∑𝑖𝑗

𝑁

𝑗=1

≥ 𝑘 

0 for ∑𝑖𝑗

𝑁

𝑗=1

< 𝑘

 ,  (3) 

where 𝑝 is determined such that the expected number of RIs is 𝜇, i.e., 

1

1 − ∑ (
𝑁
𝑗
) 𝑝𝑗(1 − 𝑝)𝑁−𝑗𝑘−1

𝑗=0

∑ℓ(
𝑁
ℓ
)𝑝ℓ(1 − 𝑝)𝑁−ℓ

𝑁

ℓ=𝑘

= 𝜇 . 

In the first line of Eq. (3), the denominator is the probability of sampling at least 𝑘 RIs in Step 1, and 

the numerator is the probability to get the tuple (𝑖1, 𝑖2, … , 𝑖𝑁) with exactly ℓ = ∑ 𝑖𝑗
𝑁
𝑗=1  RIs in Step 1. 

Thus, Eq. (3) is the conditional probability that the inspection days (𝑖1, 𝑖2, … , 𝑖𝑁) are chosen under the 

condition that at least 𝑘 RIs are performed. 

In contrast to RI model 1, here any number of RIs between 𝑘 (i.e., ℙ(number of RIs = 𝑘) > 0) and 𝑁 

could be sampled, which makes resource planning more difficult. 

Example: RI model 3 

The inspection days in this RI model are generated as follows: 

1. Choose exactly 𝑘 of the 𝑁 days to hold the minimum number of RIs by sampling without 

replacement. 

2. Choose additional RI days using a Bernoulli trial (coin toss) with probability 𝑞 to perform an RI 

for each of the remaining 𝑁 − 𝑘 days. 

If 𝑘 = 0, then the RI models 2 and 3 are equivalent with 𝑝 = 𝑞. When 𝑘 > 0, Steps 1 and 2 yield 𝑘 +

(𝑁 − 𝑘)𝑞 expected RIs, and thus 𝑞 = (𝜇 − 𝑘) (𝑁 − 𝑘)⁄ . Note that 𝑝 ≠ 𝑞 for 𝑘 ≥ 1. 

The probability 𝑝(𝑖1,𝑖2,…,𝑖𝑁) that the inspection days (𝑖1, 𝑖2, … , 𝑖𝑁) are chosen is given by 

𝑝(𝑖1,𝑖2,…,𝑖𝑁) =

{
  
 

  
 

 

(
𝑁 − 𝑘
ℓ − 𝑘

)𝑞ℓ−𝑘(1 − 𝑞)𝑁−ℓ

(
𝑁
ℓ
)

for ℓ =∑𝑖𝑗

𝑁

𝑗=1

≥ 𝑘 

0 for ∑𝑖𝑗

𝑁

𝑗=1

< 𝑘

 .  (4) 

Equation (4) is justified as follows: The number of RIs sampled in Step 2, ℓ − 𝑘, follows a binomial 

distribution of 𝑁 − 𝑘 trials, each with probability 𝑞 of success. Therefore, the probability of sampling 

exactly ℓ RIs in Steps 1 and 2 (combined) is the numerator of Eq. (4). Among the (
𝑁
ℓ
) tuples that sum 

to exactly ℓ RIs, all tuples have equal probability. The days are exchangeable, so the tuples are 

exchangeable. Therefore, the denominator is needed when referring to a specific tuple. For example, 
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suppose 𝑘 = 2, 𝑁 = 5, and 𝑞 = 0.5. The probability of sampling ℓ = 3 RIs is (
𝑁 − 𝑘
ℓ − 𝑘

)𝑞ℓ−𝑘(1 −

𝑞)𝑁−ℓ = 37.5%, but the probability of sampling exactly (1,1,0,0,1) is 3.75% (because there are (
𝑁
ℓ
) =

10 ways to sample ℓ = 3). 

As in RI model 2, any number of RIs between 𝑘 (i.e., ℙ(number of RIs = 𝑘) > 0) and 𝑁 occurs with 

positive probability that again makes resource planning difficult. In the limiting case 𝑘 = 𝜇 (note that 

𝑘 < 𝜇 is assumed in this paper) all three RI models coincide with 𝑝 approaching zero and 𝑞 = 0; see 

[3]. 

3 Formalization of RI objectives 

To develop new or analyze existing RI models, the objective “misuse detection” must be quantified. 

That is done here in terms of the detection probability (DP). Using the signature time 𝑇, the probability 

of detecting the misuse is defined as the probability that a misuse is detected within 𝑇 days after its start. 

In the context of RI models, it is also of interest to determine the selection probability (SP) defined here 

as the probability that a particular facility (out of the pool of facilities to which the RI scheme is applied) 

is selected at least once per year for a RI. 

Because misuse considerations are not needed for the SP derivation, we first derive the SP in Section 

3.1, and subsequently the DP in Section 3.2. 

3.1 Selection probability 

Consider for any facility 𝑗 the event 𝐴𝑗 = {facility j  is selected at least once per year for a RI}, where 

𝑗 = 1,… , 𝑛. Then the SP is the probability of the event 𝐴𝑗, and is given by, see [3], 

ℙ(𝐴𝑗) = 1 −∑ ℙ({
ℓ RIs are performed
during the year

}) (1 −
1

𝑛
)
ℓ𝑁

ℓ=𝑘
 , (5) 

where the events {not selecting facility 𝑗 for the first RI},… , {not selecting facility 𝑗 for the ℓ −
th RI} are assumed to be statistically independent, and equally distributed on {1,… , 𝑛} for each single 

event. 

Because the probability ℙ(ℓ RIs are performed during the year) depends on the RI model, it is 

different for all of the RI models in Section 2.2. The SPs for RI models 2 and 3 coincide by definition 

for 𝑘 = 0, and there is a strong numerical evidence that the SP of RI model 1 is greater than the SP of 

RI model 3 which is greater or equal than the SP of RI model 1 for all pairs (𝑘, 𝜇) with 𝑘 < 𝜇; see [3]. 

3.2 Detection probability 

To derive the DP, the following misuse assumptions are made: 

• The misuse is started in exactly one of the 𝑛 facilities at any day 𝑑 = 0,… , 𝑁 − 1 (worst 

case from the detection view, without loss of generality: facility 1); 

• If the misuse is started in facility 1 at the same day at which an RI is performed in facility 

1, then the misuse is not detected that day; 

• The misuse can only be detected within 𝑇 days after its start (the detection window consists 

of 𝑇 days). 

If the misuse is started on day 𝑑, then it can only be detected on days 𝑑 + 1,… , 𝑑 + 𝑇. If no RI is 

performed on days 𝑑 + 1,… , 𝑑 + 𝑇 in facility 1, but, e.g., an RI on day 𝑑 + 𝑇 + 1 in facility 1, then it 

is too late for detection. Two cases must be distinguished: if the misuse is started on days 𝑑 =
0,1,… ,𝑁 − 𝑇, then the detection window lies in the current year (if 𝑑 = 𝑁 − 𝑇 then it can be detected 

at days 𝑁 − 𝑇 + 1,… , 𝑁 which are 𝑇 days); or, if the misuse is started on days 𝑑 = 𝑁 − 𝑇 + 1,… ,𝑁 −
1, then the detection window overlaps with both the current and subsequent year. 
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Let 𝑇′ with 1 ≤ 𝑇′ ≤ 𝑇. If the misuse is started on day 𝑑, 𝑑 = 0,… ,𝑁 − 𝑇′, then the detection window 

is within the current year, and the probability that the misuse is not detected within 𝑇′ days after its start 

on day 𝑑, is, see [3], 

 

ℙ
𝑇′
(𝑑)(not detecting the misuse)

                                          = ∑ ℙ(
ℓ RIs are performed during 

days 𝑑 + 1,… , 𝑑 + 𝑇′
) (1 −

𝑝𝑖𝑑
𝑛
)
ℓ

 .

𝑇′

ℓ=𝑀𝑎𝑥(0,𝑘−(𝑁−𝑇′))

 (6) 

Again, the probability ℙ(ℓ RIs are performed during days 𝑑 + 1,… , 𝑑 + 𝑇′) depends on the RI 

model. Using Eq. (6), the probability 𝐷𝑃(𝑑) that a misuse is detected within 𝑇 days after its start, is 

given by 

𝐷𝑃(𝑑) =

{
 

 1 − ℙ𝑇
(𝑑)(not detecting the misuse) : 𝑑 = 0,… ,𝑁 − 𝑇

1 − ℙ𝑁−𝑑
(𝑑) (not detecting the misuse) : 𝑑 = 𝑁 − 𝑇 + 1,… ,𝑁 − 1

                    × ℙ𝑇−(𝑁−𝑑)
(0) (not detecting the misuse)   

. (7) 

The reason for multiplying the non-DPs in the case 𝑑 = 𝑁 − 𝑇 + 1,… , 𝑁 − 1 is that the event 
{not detecting the misuse at days 𝑑, … ,𝑁} happening in the current year is assumed to be statistically 

independent from the event {not detecting the misuse at days 1,… , 𝑇 − (𝑁 − 𝑑)} that refers to the 

next year. Since the misusing party is assumed to choose day 𝑑 to minimize 𝐷𝑃(𝑑), the achieved DP 

(𝐷𝑃∗) is given by 

𝐷𝑃∗ = min
𝑑=0,…,𝑁−1

𝐷𝑃(𝑑), (8) 

and is used to decide whether an RI model achieves a required DP, i.e., 𝐷𝑃∗ ≥ 1 − 𝛽𝑟𝑒𝑞. 

For planners, achieved DP and SP are both useful for specifying input parameters for RI models: for a 

given RI model, specify a required DP and then check whether the resulting SP is satisfactory. If not, 

vary 𝑘 and 𝜇 to adjust the resulting SP while still achieving the required DP. Or, specify a required SP 

(e.g., any facility should be inspected with at least 0.2 probability) and then check the resulting DP. If 

the resulting DP is not satisfactory, vary 𝑘 and 𝜇 to adjust the resulting DP while maintaining the 

required SP. 

3.3 Example Scenario 

Consider 𝑁 = 365 inspection days, 𝑛 = 3 facilities in a State to which the RI scheme is applied, the 

signature time of 𝑇 = 90 days, the misuse detection probability of 𝑝𝑖𝑑 = 0.9, a minimum number of 

𝑘 = 1 RI, and the expected number of 𝜇 = 4 RIs. Figure 2 plots the misuse DP for the three RI models 

of Section 2.2. 

Figure 2 shows that RI model 1 gives the highest achieved DP among the three RI models for the above 

input parameters. The property of the DP curves of being constant up to a certain day 𝑑 and then 

following a U-shape is due to the definition of RI models 1-3. Other RI models may lead to different 

shapes; see [3]. 
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Figure 2: DP curves for the RI models 1-3 of Section 2.2. 

Table 1 presents the achieved DPs for RI models 1-3 for various pairs (𝑘, 𝜇) and 𝑁 = 365, 𝑛 = 3, 𝑇 =
90 and 𝑝𝑖𝑑 = 0.9. 

RI model 1 

 

RI model 2 

 

RI model 3 

 

Table 1: Achieved DPs for the RI models 1-3 of Section 2.2, and for 𝑁 = 365, 𝑛 = 3, 𝑇 = 90 and 𝑝𝑖𝑑 = 0.9. 
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As for the SPs, there is strong numerical evidence in addition to the values in Table 1 that the achieved 

DP of RI model 1 is greater than the achieved DP of RI model 3 which is greater or equal to the achieved 

DP of RI model 2 for all pairs (𝑘, 𝜇) with 𝑘 < 𝜇. For 𝑘 = 0 the achieved DPs of RI models 2 and 3 

coincide by definition of the RI models. The achieved DP for RI model 1 is constant for a given 𝜇 and 

any 𝑘 < 𝜇, because Eq. (2) does not depend on 𝑘 (see the comments at the end of the section on RI 

model 1). 

3.4 RI Model selection 

RI models should be compared based on multiple criteria. The most obvious criteria are to minimize the 

average annual number of RIs (𝜇) and maximize the achieved DP. However, widely varying annual 

numbers of RIs would be impractical for inspection planning and resourcing purposes. An upper limit 

on the annual number of RIs may be needed. Simultaneously, if the annual number of RIs does not vary 

enough then the misusing State gains some ability to predict whether an RI will occur close to the end 

of the reference period. The State could conceal an acquisition path by identifying and exploiting low-

risk opportunities for facility misuse. These tradeoffs are complex and require further discussion. For 

the discussion here, it is assumed that a model is preferred that maximizes the achieved DP 𝐷𝑃∗ for 

given value 𝜇 (or minimizes 𝜇 while achieving a required achieved DP 𝐷𝑃∗), regardless of other 

considerations. 

Table 1 indicates that RI model 1 should be selected for implementation because for given pairs (𝑘, 𝜇) 
its achieved DP is always greater than the achieved DPs of RI models 2 and 3. The disadvantage of RI 

model 1 is that its number of RIs is ⌊𝜇⌋ or ⌊𝜇⌋ + 1, i.e., highly predictable. Thus, if RI model 1 is applied 

year after year the misuser can observe that only ⌊𝜇⌋ or ⌊𝜇⌋ + 1 RIs are performed, and thus, in a year 

in which ⌊𝜇⌋ + 1 RIs have been performed, the misuser knows that there will be no further RI that year. 

Therefore, he directly starts the misuse if he did not do so before. Note that RI model 2 is – among the 

three considered here – the one with the highest variance of the number of RIs, i.e., the highest 

unpredictability in terms of numbers of RIs. 

Could it also be that there is a fourth model from the set 𝑋 (see Eq. (1)) that results in an even higher 

achieved DP compared to that of RI model 1 for all input parameters? Thus, we raise the question of RI 

model selection. If no further constraints are imposed (e.g., maximum unpredictability of the number of 

RIs in each year, a fixed upper value of the number of RIs, etc.), then an RI model from set 𝑋 should be 

selected that maximizes the achieved detection probability, i.e., 

max
𝑥 ∈𝑋

𝐷𝑃𝑥
∗ , (9) 

where 𝐷𝑃𝑥
∗ means the achieved DP according to Eq. (8) for a specific RI model 𝑥 ∈ 𝑋. 

Problem (9) is a tough one that has not been solved, but it bears resemblance to problems treated in the 

field of “calculus of variations”; see [6]. For example, consider a positive function 𝑓(𝑥) on the interval 

[0, 𝐿] with 𝑓(0) = 𝑎 and 𝑓(𝐿) = 𝑏 for given positive values 𝑎 and 𝑏. Let 𝑆(𝑓) be the surface defined 

by rotating the curve around the 𝑥-axis. The area of the surface is then 

𝑆(𝑓) = 2𝜋∫ 𝑓(𝑥)√1 + (𝑓′(𝑥))
2
𝑑𝑥

𝐿

0

 . 

Consider the function space 𝑉 ≔ {𝑓: [0, 𝐿] → ℝ: 𝑓 differentiable on (0, 𝐿), 𝑓(0) = 𝑎, 𝑓(𝐿) =
𝑏, 𝑓(𝑥) > 0 for all 𝑥 ∈ (0, 𝐿)} , then the variational problem 

min
𝑓∈𝑉

𝑆(𝑓) 

must be solved. In the context here, the function space is the set 𝑋 of RI models given by Eq. (1) and 

the functional to be optimized is min
𝑑=0,…,𝑁−1

𝐷𝑃𝑥(𝑑). For curiosity, the solution of the above “surface” 

problem is the so-called catenoid; see [6]. 
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4 Tool for Random Inspection Planning in Safeguards 

The authors developed the Tool for Random Inspection Planning in Safeguards (TRIPS) to implement 

these statistical approaches in an evaluator-usable package. Figure 3 shows the input fields (left), main 

results (center), and the achieved DP as a function of the identification probability 𝑝𝑖𝑑 and detection 

windows for various period lengths (right). TRIPS has aided in discussion of proposed safeguards 

practices and may serve as a prototype for future safeguards software. 

 
Figure 3. A screenshot of the TRIPS user interface, including input fields (left), main results (center), and 

auxiliary plots (right). 

For a given misuse scenario (left input fields in Figure 3), TRIPS calculates the chance a particular 

facility has at least 1 RI during the year (SP), and the achieved DP (the two last entries in the middle 

column in Figure 3). The achieved DP can be calculated as a function of 𝜇 or vice versa. In the latter 

case, the box “Calculate average # inspections needed to achieve a given detection probability” must be 

ticked. 

Various auxiliary plots can be created, including sensitivity curves that illustrate how 𝜇, SP, and the 

achieved DP are affected by assumptions about 𝑝𝑖𝑑 and 𝑇; see Figure 4 (left). Also, the probability mass 

function of the number of RIs can be illustrated; see Figure 4 (right).  
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Figure 4. Sensitivity curves (left) and probability mass function of the number of RIs (right). 

5 Conclusions and future work 

This paper describes the basic framework for RI models and formalizes the objectives of RIs. As a result, 

the equations for the selection probability (i.e. the probability that a particular facility is selected at least 

once per year for an RI), and the detection probability (i.e. the probability of detecting the misuse within 

𝑇 days after its start), are given and discussed for three RI models. 

A main future research topic consists in solving the optimization problem (9) using the set of RI models 

given by Eq. (1) with the possible extension ℙ(number of RIs = 𝑘) > 0, and extending it beyond the 

minimum-effort-maximum-achieved DP tradeoff discussed in Section 3.4. Practical considerations, 

such as minimizing inspection resource variability or maintaining a sufficient level of unpredictability, 

should also be considered. For this, additional statistical properties of the RI models need to be derived. 

Advanced RI models may need to be developed to achieve satisfactory performance in all 

considerations. Simulation studies may be needed to evaluate the RI models. Procedures for selecting 

and applying RI models remain a topic of discussion. Application and refinement of these models for 

planning and evaluation purposes of safeguards activities under the SLC remains a high priority for the 

IAEA. 
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