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Abstract

National security relies on several layers of protection. One of the most important ones is the traffic control at
borders and ports that exploits Radiation Portal Monitors (RPMs) to detect and deter potential smuggling
attempts. Two relevant issues for the identification of radioactive materials at RPMs are the presence of
natural background radiation and shielding materials surrounding the sources. In this paper, we study the
robustness of the unmixing algorithm that we have developed for source identification in both cases: (1)
gamma-ray bare source unmixing in the presence of natural background, and (2) identification of shielded
neutron sources. Neutron sources are more difficult to shield than gamma-ray sources and therefore can
be easier to detect during passive inspection. This would be a particularly challenging scenario for the
unmixing algorithm because of the shielding material’s ability to act as a spectrum modulator. For the
first application, we experimentally studied the robustness of the unmixing algorithm to different radiation
background spectra, due to varying atmospheric conditions, in the 16◦C to 28◦C temperature range. The
unmixing algorithm can be used to reliably identify the unshielded gamma-ray radionuclides that triggered
an alarm, even with fewer than 1,000 detected counts and in the presence of multiple nuclides at the same
time. With fewer than 500 counts available, we found larger differences of approximately 35.9% between
estimated nuclide fractions and actual ones. For the second application, we simulated a beryllium-reflected
plutonium source shielded by various materials and studied the effect of the spectral modifications induced
by shielding on the unmixing response. For shielded neutron source configurations, the algorithm requires
as few as 5,000 counts in the whole spectrum to remain effective.

Keywords: radiation portal monitors, organic scintillators, unmixing, expectation propagation, shielding,
background radiation

1. Background and Motivation

One of the greatest lines of defense to deter, detect, and interdict the illicit movement of special nuclear
material (SNM) and radioactive sources is the application of radiation portal monitors (RPMs) at the
country’s many ports of entry [1]. RPMs are capable of detecting statistically significant increases in
radiation above natural background. Radioactive sources that result in a count rate within the statistical
uncertainty of the RPM, close to or below natural background, have zero chance of being picked up by
RPMs. RPMs typically encompass plastic scintillators, e.g., polyvinyl-toluene (PVT), sensitive to gamma
rays, and He-3 proportional counters or 6LiZnS-based scintillators, sensitive to neutrons [2]. For most vehicle
and rail RPMs, the use of plastic scintillator allows to cover very large solid angle at reasonable costs, thus
achieving high efficiency. The prompt detection of radioactive sources must be performed in a short time
window of a few seconds to keep traffic flowing properly. The performance of a portal monitor in terms
of sensitivity, i.e., maximization of the positive detection rate, depends on the detection efficiency of the
system and its form factor, which should be optimized for a specific application [3]. In previous studies [4],
we experimentally demonstrated the use of a sparsity-promoting Bayesian algorithm capable of unmixing
the signatures from weak gamma-ray sources, detected by organic scintillators. Our algorithm, hereafter
referred to as the unmixing algorithm, allowed to identify radioactive sources based on measured spectra
consisting of less than 500 counts despite the relatively low energy resolution featured by organic scintillators.
In an unknown spectrum with approximately 1000 counts, the algorithm is able to identify up to three
gamma emitting radionuclides. The algorithm relies on a pre-compiled library of radionuclides to correctly
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identify the mixture components. The library encompassed the most common gamma-ray emitting nuclides
among naturally-occurring radioactive material (NORM), laboratory gamma-ray sources, radio-isotopes for
medical applications, and special nuclear materials. These materials can often cause nuisance alarms, which
are false alarms that will slow down the flow of traffic at the RPM ports of entry. Source identification for
neutron sources requires further expansion of a source library to include neutron sources that may also be
attenuated by means of different shielding layers. The presence of background radiation can have a large
impact on the detection sites, with cosmic and terrestrial radiation being seen on the detected spectra. In
the inherently low signal-to-background measurement conditions at RPMs, the intrinsic observation noise
should not be neglected and can be modeled as Poisson noise, i.e., shot noise.

In this study, we focus on extending the use of the sparsity-promoting Bayesian algorithms to identify
multiple radionuclide sources in an unknown mixture in the presence of different background conditions,
as well as identifying the shielding materials in a sparse SNM neutron measurement. The main difference
between these implementations is that instead of only identifying which radiation source is present as in
the gamma source identification, both the neutron source and its shielding component can be identified
simultaneously when the difference from natural background radiation is detected. Performing the neutron
source unmixing requires a slight modification to the algorithm to account for each shielding material’s
neutron cross sectional data. Previous works make use of the neutron interaction cross-sections of the
various shielding materials and implement these into the calculation of the predicted neutron energy spectra
[5]. In the work by Lawrence et al. [5], different shielding layers were tested and the spectra were unfolded
by taking the cross section of each material into account when reconstructing an attenuated spectra incident
on the detector with a known initial fission spectrum. This procedure allowed for the unfolding algorithm
to estimate the thickness of a variety of highly explosive attenuating materials present in the shielding to
within 10% of the true thickness. Our algorithm attempts to perform a similarly effective unmixing while
using fewer overall counts to reconstruct the original spectra.

2. Methods

2.1. Experimental Methods

Background radiation, humidity, and temperature measurements were taken from an outdoor environ-
ment in Urbana, Illinois, US (40.1106◦ N, 88.2073◦ W). The detectors for the long-term radiation, tempera-
ture and humidity data gathering were housed in an outdoor shelving unit with the sides covered by a thin
sheet of plastic to keep out rainfall. This approach prevented the inside of the shelving unit from becoming
a micro-environment with a possibly different temperature and humidity than the outside. Changes in the
background count rate could be the effect of three different causes: (1) the actual increase of the background
radiation, (2) a detector-dependent readout increment, or (3) background shielding by large vehicles close
to the RPM (also known as ship-effect. The first cause can be due to rainfall, which scavenges the radon
progeny within clouds and causes its deposition on the ground [6]. The second cause can be determined
by several factors, such as a decreased gain of the detector photomultiplier tube (PMT) due to an increase
of the external temperature [7, 8, 9]. The gain decrease may result in an increase of the energy range
corresponding to the selected detection window, and therefore in an increase of the overall count rate. In
general, the temperature has multiple effects on a PMT operation, including dynode gain change and cath-
ode sensitivity [10]. We recorded the detected background radiation and the environmental temperature to
understand their correlation, and compensated for detector dependent effects, if necessary. The detector
and PMT were in thermal equilibrium with the environment, therefore, it was possible to study the corre-
lation between the measured temperature and the background count rate, directly. We did not include a
temperature stabilization system, as done in some RPMs deployed in the field, because our objective was to
investigate the effect of the temperature fluctuations in a relatively small range around room temperature
on the readout.

We measured the background counts using a pair of 5.08 cm × 5.08 cm EJ-276 organic scintillators by
Eljen Technologies. EJ-276 (4.546×1022 and 4.906×1022, hydrogen and carbon atoms per cm3, respectively)
is a relatively new type of plastic scintillator, with pulse shape discrimination capability [11]. A 9214B
PMT by Electron tubes converted the radiation-induced light pulses into current pulses. According to the
manufacturer, the temperature coefficient of the PMT due to change in photocathode sensitivity and electron
multiplier gain is -0.3%/◦C [12]. The PMTs were connected to a desktop high-voltage power supply (CAEN
DT5533EN) that supplied -1950 V to the first detector and -1838 V to the second one to gain match both
the detectors at a pulse integral of 5.15 V ns/dt, corresponding to the Compton edge of a 137Cs source,
selected as the pulse integral corresponding to the 80% of the Compton edge with respect to its maximum.
The lower detection threshold was 15 keVee. The detected pulses were digitized by a 14-bit 500-MSps CAEN
DT5730 digitizer and acquired by the CAEN CoMPASS software [13]. Raw data were then processed using
a custom software written in Matlab 2017, The MathWorks, Inc. Temperature and humidity measurements
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were taken outdoor using a Teracom humidity and temperature sensor (TSH300v2) connected to a Teracom
Ethernet data logger (TCW210-TH), precise to 0.1 ◦C, which was then connected via Ethernet to a lab
computer for data storage. The data logger stored temperature and humidity measurements in 5 minute
intervals.

2.2. Background, Temperature, and Humidity Data

Fig. 1a displays how the counts measurements changed over one week, from July 30 to August 6, 2020.
The graph shows binned counts over five-minute intervals, with a variety of trends throughout the week.
The large spikes in counts measurements align with rainfall events on their respective days. Data in selected
time frames were used to create background spectra at four different background conditions, labeled in
Fig. 1a as stable, ramp, peak, and low. The stable background was chosen at a time without any rainfall
and relatively average temperature and humidity for the time of day, representing a baseline background
level. Peak background corresponded with a time of heavy rainfall, creating a large spike in counts as
expected. Ramp background corresponded with a time span when rain was beginning and the number
of counts were rising to a peak region. Lastly, the low background region indicates a time span with the
lowest number of recorded counts, also corresponding with low humidity for the time of day. These four
regions are essential for analysis of how a changing background spectra and counts can interfere with the
effectiveness of the unmixing algorithm. The main difference between the different background spectra can
be noticed in Fig. 1b, with the low background being characterized by an overall lower intensity throughout
the whole spectrum, compared to the other background spectra. Extended count gaps in Fig. 1a correspond
to detector calibration periods. The calibration was performed by placing the Cesium-137 source in front
of the detectors and checking that the shape and the Compton edge location were consistent with previous
acquisitions.

(a) Outdoor sensor data over time for a) Temperature, b) Humid-
ity, and c) Counts. Ramp, Peak, Stable, and Low chosen regions
are indicated with blue colored bars.

(b) Light Output background spectra measured under different
conditions for one hour.

Figure 1: Background, Temperature, and Humidity Data

Figures 1a and 1b show how both the temperature and counts changed over the testing time period.
As shown, the temperature had significant variation as a result of the varying high temperatures during
the day, transitioning from night-to-day and day-to-night, and the sun’s position relative to the detector.
During the measurement, the temperature varied from 16.48◦C to 28.28◦C, with an average of 21.64◦C.
We analyzed the dependence of the background counts, in five-minute intervals, with the temperature to
identify potential gain drifts caused by temperature gradients, and determine whether further spectrum
re-calibration was necessary.

The sample standard deviation for counts in five minute intervals, σ, is approximately 588.7 counts, with
some anomalies in recordings created by days of heavy rainfall. These anomalous results can be analyzed
on a case-by-case basis, with most being a result of short bursts of heavy rainfall. At a temperature slightly
above 20◦C, a relatively high count rate was recorded due to a day of very heavy rainfall that caused an
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increase in radioactivity from deposition of the radon progeny on the ground. Similarly, a region of low
count rates (11,000 in five minutes, on average), and temperature ranging from 19◦C to 24◦C, was measured
when the humidity was low. As expected, a positive weak correlation between count rate and temperature
was found. The counts increased, on average, by about 1,600 from 16◦C to 28◦C, i.e., the temperature range
of our experiment. This increment is comparable with 3σ of 1766.1. Therefore, we concluded that during
the experiment the temperature negligibly affected the count rate. As such, all of the data collected can be
used for applying to the unmixing algorithm without further spectral gain correction.
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Figure 2: Counts as a function of Humidity Scatter Density Plot

Fig. 2 shows the scatter-density plot of the
measured counts as a function of the recorded
humidity. The plot intensity is the frequency
of occurrence of the counts. This plot shows
a positive weak correlation between the count
rate and the humidity, with a large concentra-
tion of points occurring around the 80-90 humid-
ity range at around 12000 counts. Due to the
higher humidities often corresponding to rainfall
events, this positive weak correlation could also
indicate a dependence of the counts on the occur-
rence of rainfall events. Many of the anomalous
events occur in the high-count-high-humidity re-
gion of this plot, indicating many of these rainfall
events happen at high humidity conditions, due
to the increased chance of rainfall, and can cause
a spike in the background radiation counts.

2.3. Computational Methods for Neutron Source
Identification

The detection of weapons-grade Plutonium
isotopes is an essential role of the portal moni-
tors, making the testing of this material with the
algorithm useful to determine if it can be effec-
tively identified. Because of this, our simulated
standard neutron source is the 4.5 kg α-phase
weapons-grade plutonium sphere, identified as the BeRP Ball [14]. This sphere can be simulated from the
specifications given in [14], then shielded by a variety of common neutron shielding isotopes to create a
spectra library of shielded plutonium. Identifying the presence of not only a strong neutron source, but also
the type of shielding being used, can give operators a better understanding of the materials passing through
the port of entry. The addition of both background and shielded spectra to the algorithm library allows for
a more comprehensive spectral unmixing while maintaining the efficiency of the RPM scanning process.

The neutron spectra data gathering experiments made use of MCNPX-Polimi to simulate as close to
the theoretical physical setup as possible. The neutron source being simulated was a 4.5 kg sphere of α-
phase weapons-grade plutonium called a BeRP ball [14]. This source was created by Los Alamos National
Laboratory in 1980, where 304 stainless steel cladding was added to the plutonium sphere. The BeRP ball
source has an activity of 8.8 x 105 neutrons/second. This sphere consisted of various isotopes of plutonium,
as well as a number of other elements in smaller proportions. With these specifications added into MCNP,
a simulation setting up a physical shielding experiment could be done. In order to build out a library of
possible shielding materials, four different shielding layer types were simulated at a distance of 40 cm away
from the center of the BeRP ball source. The total combined thickness of the layers in each experiment was
2 inches, and the four orientations used were as follows: 2 inches Polyethylene, 2 inches Tungsten, 1 inch
Depleted Uranium and 1 inch Polyethylene, and 1.5 inches Iron 0.5 inches Polyethylene. The detector that
was simulated was a deuterated stilbene organic scintillation detector, with dimensions of 2x2x2 inches3.
Lastly, components of the physical setup, including an aluminum workbench and concrete flooring were
added to make the simulation as close to the physical version of the experiment as possible. Each of the
simulations was run with MCNPX-Polimi for a total of 20,000,000 source particles, corresponding to a
227.27 second physical experiment. This allows for the creation of an energy spectra spectra when exiting
the shielding material and entering the detector, which can then be used as a spectral shape reference for
the cross-section calculation method outlined in [5].
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2.4. Radioisotope Library and Mixture Generation

We first generated a variety of gamma source radioisotope mixtures to test the effectiveness of the
unmixing algorithm. The algorithm performance in identifying the present radionuclides and correctly
estimating their fractions were calculated, as a function of the number of detected counts. These library
spectra were measured using the same experimental setup as used for the background measurement. In this
case, the acquisition was performed indoors. The isotope library included: 133Ba, 109Cd, 57Co, 60Co, 137Cs,
54Mn, 22Na, and 238U. Each source, except 238U, had an activity of 1 µCi (3.7×104 Bq) as of October 19,
2017. The 238U source was in the shape of a hollow rod coated by a 1.07-mm thick aluminum liner (2.54 cm
outer diameter, 1 cm inner diameter and 25 cm length) of 1.8 Ci (6.66×1010 Bq) activity, measured on
October 16, 2013. The measured spectra are displayed in Fig. 3. Each isotope was measured over a different
time period, enough to collect approximately 2,000,000 counts in total. The light output was calibrated in
electron-equivalent units using the Cs-137 Compton edge pulse integral value. The background of indoor
measurements was not removed due its negligible scale compared to the radioisotope spectra counts. With
these libraries created, the mixtures were then generated and used as input of the unmixing algorithm.

Figure 3: Library of radionuclides used for the unmixing algo-
rithm, consisting of eight gamma-ray emitting isotopes.

We generated six different mixtures using the
pulse integral spectra information from the li-
brary. These mixtures were chosen based on
naturally occurring isotope combinations. Spec-
tra with similar shapes but including different
nuclides were also chosen to test the algorithm
spectral sensitivity. Each mixture generation be-
gan by linearly combining the normalized spec-
tra corresponding to the selected radionuclides
scaled up the mixture counts level, followed by
adding a set amount of stable reference back-
ground measurement, conservatively equivalent
to one minute of detection time. Lastly, Pois-
son noise was added to each mixture to simu-
late Poisson noise in both the isotopic decay and
background radiation. Each mixture was gen-
erated 100 times, with background and Poisson
noise applied each time, and the unmixing al-
gorithm was run over each iteration of the mix-
tures. The average value for predicted radionu-
clide relative amounts and probability of appear-
ance was calculated from the unmixing algorithm

iterations and reported in the heat maps in Fig. 6. This approach was then repeated for each of the varied
amount of mixture counts (500, 1000, 5000, 10000, 25000, 50000, and 100000 not including background or
Poisson noise). A stable background measurement was added to the library for the algorithm to achieve
better results at lower count levels. The scale of typical vehicle RPM with four plastic scintillators may
have a total background count rate of about 1000 gamma counts per second, with many alarms just being
hundreds to thousands of gamma counts per second above background. These situations account for many
of our lower count levels in the range, such as 500, 1000, and 5000 counts. The upper end of the count level
range is included for better visualization, as well as including situations where higher count alarms do occur.

2.5. Shielding Material Library and Mixture Generation

Similar to the library for gamma radioisotopes, a library of spectra from a single neutron source with a
variety of shielding materials was created. The materials used in the library were based on the four shielding
configurations used in simulations, with each isotope in the library corresponding to one of the shielding
layer types. For example, the polyethylene material is represented by the Carbon and Hydrogen isotopes in
the library. The cross section of each material was used to perform the calculation as shown in equation 1,
similar to that shown in [5]:

φmod
j = Wj

∏
l

exp (−σljτl) (1)

Equation 1 is used to represent how the BeRP Ball spectra is modified by the inclusion of the cross
section and thickness data of the shielding material. In the equation, τ represents the 2 inch shielding
thickness, l represents the material isotope, j represents the energy bin, σlj represents the cross section of
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the material at a specific energy, and Wj represents the BeRP ball spectra at a specific energy group. This
calculation produces a spectra that has been modified by the cross section of the shielding material. This
calculation was then used for each shielding isotope to generate the library for the unmixing algorithm.
These library spectra are shown in Fig. 4 below:

Figure 4: Library of shielding isotopes used for the unmixing algorithm, each modified with 2 inches of shielding material.

From these normalized spectra in Fig. 4, four different mixtures were generated to test the effectiveness
of the unmixing algorithm in a similar manner to the gamma spectra mixtures. Poisson noise was added
to each of the mixtures, along with having seven count levels for testing how few counts are needed so the
algorithm can remain effective.

2.6. Unmixing Algorithm

As mentioned above, we used a Bayesian algorithm to find the mixing coefficients associated with each
library nuclide to assess their contribution to the measured spectrum. In previous studies, we analyzed
several Bayesian approaches to solve this problem [15, 4]. These methods exploit the posterior distribution
of the mixing coefficients, by combining the observed data with available prior information. We have observed
that a sparsity-promoting approach using a Bernoulli-truncated Gaussian (BTG) prior model yielded state-
of-the-art estimates for the nuclide fractions in the unknown mixtures [4] and, therefore, we only consider
this method in this work.
Given an observed light output spectrum y = [y1, . . . , yM ]T , observed in M energy bins, which is associated
with a mixture of up to N known sources, whose individual spectral responses are denoted by {A:,n}n=1,...,N

and gathered in the M × N library matrix A = [A:,1, . . . ,A:,N ] = [AT
1,:, . . . ,A

T
M,:]

T . Each Am,: is a row
vector gathering the spectral responses of the N known sources in the mth energy bin. The coefficient
associated with the nth source, corresponding to the amount present in the mixture, is denoted by xn and
the N coefficients are gathered in the vector x = [x1, . . . , xN ]T . In this work, N = 9 since we included the
eight library sources and a reference background spectrum, acquired over 12 hours and normalized to 1 (unit
integral), like all the other library spectra. At a first approximation, we assume a linear mixing model of
the source components, which can be expressed in matrix form as y ≈ Ax. A is known and is omitted in
all the conditional distributions hereafter. As mentioned above, the observation noise is modeled by Poisson
noise, leading to the following form of the likelihood

f(ym|x) = (Am,:x)
ym exp [−Am,:x]/ym!, ∀m = 1, . . . ,M. (2)

The entries of y are independently distributed, i.e., f(y|x) =
∏M

m=1 f(ym|x) =
∏M

m=1 f(ym|Am,:x) and are
conditioned on the value of x. Bayesian methods rely on the knowledge of prior information available about
x, the coefficients, to enhance their recovery from the observable y, the light output spectrum. The a-priori
information is the prior distribution f(x) and the estimation of x can then be achieved using the posterior
distribution f(x|y) = f(y|x)f(x)/f(y).
The efficient sparsity-promoting BTG prior model of x is described in Eq. (3)

f(xn|wn) = (1− wn)δ(xn) + wnNR+(xn; 0, σ2
n), ∀n = 1, . . . , N

fn(wn = 1) = πn, ∀n = 1, . . . , N, (3)

In Eq.(3), δ(·) denotes the Dirac delta function, which is equal to 1 when xn = 0 and 0 elsewhere and
where NR+(xn; 0, σ2) is a probability density function (p.d.f.) truncated Gaussian distribution, defined on
R+ to enforce the non-negativity of the elements of x. The truncated Gaussian prior has hidden mean 0
and hidden variance σ2these are the mean and variance of the non-truncated Gaussian distribution). The
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presence of the nth source is controlled by the binary variable wn, which is equal to 1 when the nth is
present and 0 otherwise. πn is the prior probability of presence of the nth source.

We set πn = 1/N,∀n as we expect a limited number of sources to be simultaneously present in the
mixture, while we do not wish to promote any specific source. These parameters can however modified by
the practitioners. We set the variances {σ2

n} as in Eq. (4) for each source

σ2
n = 0.1

M∑
m=1

ym. (4)

Instead of considering a prior model only for x, Eq. 3 defines a joint prior model for (x,w), where

w = [w1, . . . , wN ]T , expressed as f(x,w) =
∏N

n=1 f(xn|wn)fn(wn). The proposed unmixing algorithm
thus aims at estimating jointly (x,w), i.e., at performing jointly the source identification (through w) and
quantification (through x).

Using the Bayes’ rule, the joint posterior distribution of (x,w) is given by f(x,w|y) = f(y|x)f(x,w)/f(y).
The algorithm adopted in this paper and originally described in [4] relies on approximate Bayesian

estimation and builds an approximate distribution Q(x,w) ≈ f(x,w|y) whose moments are much simpler
to evaluate than those of f(x,w|y). The method belongs to the so-called class of expectation propagation
(EP) methods [16] to provide approximate point estimates of the mean and the covariance of the posterior
distribution of x (and w). It offers several advantages compared to traditional approaches that exploit the
posterior distribution using Hamiltonian Monte Carlo methods [15, 17] and is also motivated by the fact
that the posterior means Ef(x,w|y)[x] and Ef(x,w|y)[w] associated with the posterior distribution f(x,w|y)
are intractable analytically. Further details on the EP algorithm and its implementation can be found in
our previous work [4] and are available online in its current version at [18].

2.7. Unmixing Algorithm Classification Methodology

In order to determine the effectiveness of the unmixing algorithm, 100 iterations of the chosen mixtures
were generated and run through the algorithm to generate two outputs: 1) The predicted proportional
amounts of each radioisotope or shielding material for each of the mixtures, and 2) The predicted probability,
ranging from 0 to 1, of the presence of each radioisotope or shielding material in the mixture. These iterations
were performed for a variety of count levels, ranging from 500 total counts for each spectra up to 100,000
counts. These values are then used for the creation of the heat maps shown in Figures 6 and 7 by using
an average calculation for the 100 iterations. These heat maps show the average presence probabilities
for each isotope or shielding material at each mixture counts level, with the color bar representing this
0 to 1 numerical information on a color scale. These probabilities allow for the analysis of the unmixing
algorithm’s effectiveness at low and high count levels, with the case of low count levels achieving high
predicted probabilities on the correct isotopes and materials being ideal for showing the algorithm’s ability
in a realistic portal monitor situation.

3. Results

3.1. Source Identification - Gamma

The source identification for gamma source radioisotopes uses the 100 algorithm runs of each of the
mixtures to average the predicted probability of which radioisotopes are present in the mixture. Because
many of these sources can be low activity, and the time scale of the portal monitor passing is very short, the
algorithm should be able to correctly identify which isotopes are present at a low total number of counts to
be considered effective. In order to make this possible, we found that the inclusion of background spectra
in the library was necessary as shown in Figures 5 and 6:
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(a) Mixture #1 Heat Map (b) Mixture #4 Heat Map (c) Mixture #5 Heat Map

Figure 5: Heat Maps of three tested mixtures when background is NOT included in the library. Materials highlighted in red
indicate the present materials in each mixture. Each number represents the average predicted probability of the individual
isotope being present.

(a) Mixture #1 Heat Map (b) Mixture #4 Heat Map (c) Mixture #5 Heat Map

Figure 6: Heat Maps of three tested mixtures when background is included in the library. Materials highlighted in red indicate
the present materials in each mixture. Each number represents the average predicted probability of the individual isotope being
present.

Comparing the effectiveness of the algorithm when the background is included in the library to when
it is not included shows how the background included results allow for accurate source identification at a
significantly lower counts level. The algorithm is able to consistently identify the presence of the background
and is able to factor it out of the identification of other sources, therefore improving how many counts are
needed in order to separate the source spectra. Similarly, isotopes such as 238U had spectra that were very
similar to the background spectra and therefore were often identified as being present until very high count
levels were tested. With background included, the algorithm was able to determine the difference between
these spectra at relatively low count levels.

3.2. Source Identification - Neutron

The source identification of neutron shielded sources occurred through the creation of shielding material
mixtures and combinations that were similarly done in MCNPX-Polimi simulation. Using the cross section
method outlined above, three mixtures were created using low-Z and high-Z materials to simulate possible
shielding scenarios, with a fourth mixture testing two high-Z materials. After the generation of 100 iterations
of the mixtures and running them through the unmixing algorithm, the following heat maps were created
for these shielding scenarios in Fig. 7:
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Figure 7: Heat maps of each of the four mixtures of different shielding materials with the fixed BeRP Ball neutron source.
Materials highlighted in red indicate the present materials in each mixture.

As shown in the heat maps in Fig. 7, the algorithm’s certainty on the presence of the correct isotopes
vastly increases as more counts are included in the mixture. Unlike the gamma radioisotope mixtures, many
of these shielding mixtures are not identified with a certainty of over 50% until reaching about 5000 counts
in the mixture. This is likely due to the cross section modification to the BeRP ball spectra making these
shielding material spectra all very similar in shape and scale, thus causing more counts to be needed for a
differentiation to be made by the algorithm.

4. Discussion and Conclusions

We demonstrated that Bayesian unmixing algorithms can be a viable, computationally cost-effective
approach to identify the types of radioactive materials in transit through RPMs [4]. The overall RPM
sensitivity and false alarm rate depends mostly on the detectors’ intrinsic efficiency and geometric solid
angle with respect to the source [3]. However, when an alarm is reported, the correct identification of
SNMs is crucial to discriminate them from other sources, such as NORM or radionuclides for medical
use. While the minimum detectable amount of radioactivity strongly depends on system parameters, the
identification performance directly depends on the unmixing algorithm and the detectors’ energy resolution
[4]. RPM performances in the field are strongly affected by changes in the radiation background, which
could be due to surrounding materials or to transient atmospheric conditions. We first focused on the
latter problem and tested the performance of our unmixing algorithm at different background conditions.
We used plastic organic scintillators to monitor the radiation background and selected background spectra
during different time periods during an outdoor continuous measurement. After identifying a reference
background, we have selected the background spectra corresponding to a rapidly increasing count rate, to
a count rate peak, and to a count rate significantly lower than the reference. The selected background
spectra mainly differed in terms of intensity, but a spectral increase in the high energy region was also
found, in the presence of heavy rain, which is consistent with our expectations. The reference background
should be included in the library of radionuclides, as it is expected to be present at all times. We tested
the unmixing algorithm when the different background spectra were added to the mixture of radionuclides,
instead of the reference background. We found that the capability of identifying the nuclides present in the
mixture was not significantly affected by the presence of a background other than the reference one. We
found a root-mean-square error between the true mixture fractions and the estimated ones of approximately
1.4%, regardless of the type of background used, when 100,000 counts were detected. As the number of
counts decreased, the RMSE increased and a slight sensitivity to the background type was observed at 500
counts. At low count regimes, not only the estimated mixture fractions can deviate from the true ones but
nuclides can also be misidentified. Nonetheless, the unmixing algorithm provides an inherent uncertainty
measure that can be used to determine whether a longer acquisition, with a higher signal-to-noise ratio is
needed. We can conclude that the developed unmixing algorithm is robust against background changes that
may occur because of varying atmospheric conditions within the 16 ◦C - 28 ◦C range. While this is not
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a temperature range found in harsh environments, it could be easily experienced inside an enclosure with
coarse temperature control.

Applying the unmixing algorithm to the different shielding isotopes yields similarly effective results to
the gamma isotope unmixing. The algorithm is able to effectively differentiate between these very similar
library spectra when achieving about 5000 total counts in the mixture spectra. Although a greater number
of pulses are needed to reliably identify the correct mixture isotopes when compared to the gamma isotope
unmixing, the relative strength of the neutron sources allow for this higher number of detected counts in the
same RPM scanning time. Future work can be done to expand the library to more shielding components, as
well as using physical detected data from SNM and shielded SNM to generate the shielding material spectra
library rather than simulated data. Work is being done to analyze detected data from the unshielded BeRP
Ball, along with several shielded BeRP Ball configurations, and apply these to the unmixing algorithm in
the same manner to that performed in the discussed simulations. Additionally, future work can be done to
account for the gain drift of the RPM detectors over time by incorporating a gain-dependent parameter in
the library. This would allow for the algorithm to remain accurate without recalibrating the RPM detectors
as the gain drifts over time.
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