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ABSTRACT 

The gas flow models inside a centrifuge domain are derived using the sources and sinks of mass, 

momentum, and energy. The system of equations governing the flow is combined to give non-

homogeneous form of Onsager’s equation without the pancake approximation, which is solved using 

finite element analysis. The derivations and details of the solution technique have been explored 

thoroughly in literature. This article focuses on the analysis of source distribution and strength for 

feed injection and the tails and product withdrawal via boundaries. Four different types of shape 

functions for the axial spreading of the sources and sinks are evaluated and their impacts on the flow 

and isotopic distributions are compared. The mathematical description of the source terms can be 

given as 𝑆(𝑥, 𝑦) = 𝑆0𝐺(𝑥)𝐻(𝑦),  where 𝑆0 is the strength, 𝐻(𝑦) is the axial distribution and 𝐺(𝑥) is 

the radial distribution. In the radial direction, the source distribution is assumed to be given by a delta 

function while in the axial direction, the four different cases considered include triangular, linear 

step, gaussian, and delta functions. The triangle and the gaussian are anticipated to be more realistic 

representation of the flow shapes and provide smoother distributions. In order to facilitate the 

comparison of these four functions, mass flow and concentration gradient plots are generated for an 

example hypothetical centrifuge.  

INTRODUCTION 

The purpose of the gas centrifuge is to produce uranium enriched in the fissionable isotope 
235U to be used as fuel in nuclear power reactors. The isotope separation in the centrifuge volume is 

influenced by the radial pressure gradient that forces the heavier 238U molecules to be concentrated 

near the rotor wall and the lighter 235U to be concentrated near the rotational axis. This radial 

separation can be greatly enhanced by establishing a countercurrent flow in the axial direction.  

 The fluid motions within a gas centrifuge are defined using Onsager’s equation derived from 

the continuity, momentum, energy, and state equations for a viscous compressible gas. Onsager’s 

equation assumes that the flow is a small perturbation from isothermal solid body rotation, which 

allows the linearization of the governing fluid equations [1]. It also assumes that for high rotation 

rates, all the gas is confined to a narrow annulus near the rotor wall. This relaxes the effects of 

cylinder curvature on the fluid dynamics of rapidly rotating gas. A numerical model of the flow with 

the inclusion of the curvature terms has been developed in literature [2].  

 An axial countercurrent circulatory motion of the gas flow is established and maintained by 

several disturbing mechanisms. These phenomena include temperature gradients on the rotor wall, 
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the injection of feed material, and the presence of stationary scoops for mass removal. The flow 

drives can be modeled as sources and sinks of mass, momentum, and energy [3].  

 There exist numerous flow studies for a centrifuge domain that make use of the sources and 

sinks [3] [4] [5]. In this work, we have focused on the definitions of the functions used to model 

these sources and sinks. We have removed the geometry of source distribution and have used 

simplified distribution functions [3]. While different authors have used different types of these 

distribution functions to model the sources, there is not a study in literature that evaluates the effects 

of such functions on the fluid flow and in turn isotope separation. Since the previous authors have not 

outlined their reasoning for selecting a particular function type in their analysis, this work seems 

essential in understanding the effects of each on the derived mass flow and diffusion solutions. 

Therefore, we will be using four different types of shape functions to simulate the radial and axial 

spreading of sources and sinks and compare their impacts and determine the most ideal shape. These 

four functions include the triangle, linear, gaussian, and Dirac delta functions. For a more 

quantitative comparison, the normalized root-mean square difference of the stream function and 

concentration gradients for each type will be evaluated and analyzed.  

METHODOLOGY  

The fluid dynamics model used in this study is Onsager’s pancake as well as Onsager-Maslen 

with curvature effects with the inclusion of internal source/sink terms. The system of equations 

governing the flow combined to give the non-homogeneous form of Onsager’s pancake equation is 

as follows: 

(𝒆𝒙(𝒆𝒙𝑿𝒙𝒙)𝒙𝒙)𝒙𝒙 + 𝑩𝟐𝑿𝒚𝒚 = 𝑭(𝒙, 𝒚),        (1) 

Where 

𝑭(𝒙, 𝒚) =
𝑩𝟐𝑨𝟐

𝟐𝑹𝒆𝑺
∫ (𝓘𝒚 − 𝟐𝓥𝒚)𝒅𝒙′∞

𝒙
−

𝑩𝟐

𝟒𝑨𝟒 ∫ ∫ (𝐌𝒚𝒅𝒙"𝒅𝒙′
𝒙′

𝟎

∞

𝒙
−

𝑩𝟐𝑨𝟐

𝟐𝑹𝒆𝑺
[(𝒆𝒙𝓤𝒚)𝒙

+ (𝒆𝒙𝓦)𝒙𝒙]  (2) 

And 

𝐵 =
𝑅𝑒𝑆

1
2

4𝐴6 , 𝑆 = 1 +
𝑃𝑟𝐴2(𝛾−1)

2𝛾
, 𝑤ℎ𝑒𝑟𝑒 𝛾 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡𝑠 

𝐴2 =
Ω2𝑎2

2𝑅𝑇0
, 𝑤ℎ𝑒𝑟𝑒 𝑇0 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑠 𝑎𝑛𝑑 𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑅𝑒 =
𝜌𝑤Ω𝑎2

𝜇
,𝑤ℎ𝑒𝑟𝑒 𝜌𝑤  𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙, Ω 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

𝑃𝑟 =
𝐶𝑝𝜇

𝑘
 𝑖𝑠 𝑡ℎ𝑒 𝑃𝑟𝑎𝑛𝑑𝑡𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 𝐶𝑝𝑖𝑠 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 

 𝜇 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑠, 𝑎𝑛𝑑 𝑘 𝑖𝑠 𝑖𝑡𝑠 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦  

The function Χ is a master potential whose derivatives yield the physical variables 𝑢, 𝑣, 𝑤, 𝜌, 𝑎𝑛𝑑 𝑇. 

The variables in Equation (2) M, 𝒰, 𝒱, 𝒲, and ℐ are sources/sinks of mass, radial momentum, 

angular momentum, axial momentum, and energy respectively. These terms are used to account for 

the presence of a scoop and the addition and withdrawal of gas. The solution of Equation (1) 
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provides the countercurrent flow inside the centrifuge. The non-homogeneous equation has been 

solved using finite difference methods  [6] and finite-element methods [7] [8] [9] [4] [5].  

The finite element solution for mass flow derived by Witt [4] and enhanced by Thomas [5] is 

used in this study to test the effects of various source types. The strength and distribution of these 

sources can be approximated by the feed entry and the tails-withdrawal scoop by separate analyses. 

The same simplifying assumptions regarding an idealized model of the feed interacting with the 

rotating gas utilized in [3] are used here as well. These assumptions include the fact that the gas 

enters the centrifuge rotor in an angularly symmetric process, the feed gas collides with the rotating 

gas and becomes indistinguishable after one collision, and the gas enters a vacuum as it exits the hole 

in the feed pipe and spreads in the axial direction before colliding with the rotating gas. The shape 

function for such axial spreading is the matter of analysis in this work. The sources terms can be 

generalized mathematically as  

𝑺(𝒙, 𝒚) = 𝑺𝟎𝑮(𝒙)𝑯(𝒚),         (3) 

where 𝑆0 is the strength, 𝐻(𝑦) is the axial distribution and 𝐺(𝑥) is the radial distribution. These 

functions are then used as approximations of the mass, momentum, and energy terms in the right-

hand side of Equation (1) to resolve the non-homogeneity of Equation (2).  

Source Derivations 

  In the radial direction, the distribution is modelled by the Dirac delta function chosen because 

of its convenient mathematical analysis. Therefore, in Equation (3), 

𝑮(𝒙) = 𝜹(𝒙 − 𝒙∗),                                  (4) 

where 𝑥∗ is the radial location of the source and 𝑥 is defined in scale heights. For the axial 

distribution, the four different functions mentioned previously will be used to derive the finite 

element solution to Equation (1). This derivation is based on what is reported in [4]  and will not be 

repeated here. However, the analytical integrations for each source in the finite element calculations 

are included below. 

Triangular Source 

The description of the triangular shape of the distribution function is taken from Wood & 

Sanders [3]. The axial source distribution in Equation (34) is given by 

𝑯(𝒚) =  {
𝟎                                         (|𝒚 − 𝒚∗| > 𝟎. 𝟓)

−𝟒|𝒚 − 𝒚∗| + 𝟐              (|𝒚 − 𝒚∗| ≤ 𝟎. 𝟓)
,                          (5) 

where 𝑦∗ is the axial location of the source and 𝑦 is defined as the length divided by the rotor radius, 

i.e. 𝑦 = 𝑧/𝑎. 𝐻(𝑦) is a triangle of unit base with an altitude of 2. This function becomes a 

concentrated source for a centrifuge with larger aspect ratio as will be considered for this study.  

In order to apply the above source function to the finite element solution of Equation (1), the 

right-hand side vector in Equation (5.65) from [4]  needs to be modified. The matrix equation is: 

[𝑨]𝑪⃗⃗ = 𝑫⃗⃗ , where 𝑨𝒌,𝒌∗ = 𝑰𝟏 + 𝑰𝟐 + 𝑰𝟑 and 𝑫𝒌∗ = 𝑰𝟒 + 𝑰𝟓 + 𝑰𝟔 + 𝑰𝟕 + 𝑰𝟖       (6)  
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Here, 𝑘 = 1,2,3… .𝐾 𝑎𝑛𝑑 𝑘∗ = 1,2,3,…𝐾,  𝐾 = (𝑀 − 1) ∗ (𝑁 − 1) , where  

𝑀 = # 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑁 = # 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑥𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. 

The eight integrals that make up Equation (6) have been derived and solved for by Witt. We focus on 

𝐼4 in this work, which accounts for the effects of sources and sinks in the mass flow. From Witt, 

Equation (5.74) is given by 

𝑰𝟒 = −∫ ∫ 𝝓𝒌∗𝑺̅ 𝒅𝒚 𝒅𝒙
𝟏

𝟎
 

𝒙𝑻

𝟎
, where           (7) 

𝜙𝑘(𝑥, 𝑦) = 𝜎𝑖(𝑥)𝜆𝑗(𝑦) is the product of the finite element shape functions given by 𝜎 in the radial 

direction and 𝜆 in the axial direction.  

𝑺̅ = −
𝑹𝒆𝟐

𝟔𝟒𝑨𝟏𝟔𝒁𝟐 ∗
𝟏+𝒌̂𝜼𝟐

𝜼𝟒 ∫ ∫
𝝏𝑺𝑴

𝝏𝒚
 𝒅𝒙"𝒅𝒙′

𝒙′

𝟎

𝒙𝑻

𝒙
             (8) 

Equation (85) is given here only for the mass source. Our four different source functions will solely 

evaluate the mass distribution at the feed. The momentum exerted by the scoop and mass sinks at the 

exits will be kept consistent with the analysis performed by Witt. Additionally, to simplify the 

derivations, the feed is modelled as a source of mass and scoop as a sink of angular momentum.  

From Equation (8), the derivative term, 
𝜕𝑆𝑀

𝜕𝑦
, for the triangular function defined in Equation (5) is 

obtained as: 

𝝏𝑺𝑴

𝝏𝒚
= 𝑺𝟎 ∗ 𝜹(𝒙 − 𝒙∗) ∗

𝝏𝑯

𝝏𝒚
              (9) 

𝝏𝑯

𝝏𝒚
= {

𝟎                     (|𝒚 − 𝒚∗| > 𝟎. 𝟓)

−
𝟒𝒚−𝟐

|𝒚−𝒚∗|
      (|𝒚 − 𝒚∗| ≤ 𝟎. 𝟓)

                    (10) 

Plugging Equation (9) into Equation (8),  

𝑺̅ = −
𝑹𝒆𝟐

𝟔𝟒∗𝑨𝟏𝟔∗𝒁𝟐 ∗
𝟏+𝑲̂𝜼𝟐

𝜼𝟒 ∗ 𝑺𝟎 ∗
𝝏𝑯

𝝏𝒚
∗ (∫ ∫ 𝜹(𝒙′ − 𝒙∗) 𝒅𝒙′′ 𝒅𝒙′𝒙′

𝟎

𝒙𝑻

𝒙
)      (11) 

The double integral in Equation (11) can be simplified further down to: 

 𝑺̅ = −
𝑹𝒆𝟐

𝟔𝟒∗𝑨𝟏𝟔∗𝒁𝟐 ∗
𝟏+𝑲̂𝜼𝟐

𝜼𝟒 ∗ 𝑺𝟎 ∗
𝝏𝑯

𝝏𝒚
∗ (∫ 𝒙′ ∗ 𝜹(𝒙′ − 𝒙∗) 𝒅𝒙′𝒙𝑻

𝒙
)       (12) 

Plugging Equation (12) into Equation (7) yields the expression for 𝐼4. 

𝑰𝟒 = 
𝑹𝒆𝟐

𝟔𝟒𝑨𝟏𝟔𝒁𝟐 ∗
𝟏+𝒌̂𝜼𝟐

𝜼𝟒 ∗ 𝑺𝟎 ∫ 𝝈(𝒙)  ∗ (∫ 𝒙′ ∗ 𝜹(𝒙′ − 𝒙∗) 𝒅𝒙′𝒙𝑻

𝒙
)𝒅𝒙 ∗ ∫ −

𝟒𝒚−𝟐

|𝒚−𝒚∗|
(𝝀(𝒚))𝒅𝒚

𝒚∗+𝟎.𝟓

𝒚∗−𝟎.𝟓

𝒙𝑻

𝟎
    (13) 

A new Matlab script is developed to solve Equation (13), which is then used as the right-hand side 

vector of the finite element problem given by Equation (1). The integrals in Equation (13) are 

evaluated numerically using the built in Matlab© solvers.  

Linear Step Function Source 

The axial distribution of the source of this type is defined by Wood [10] as follows: 
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𝑯(𝒚) =  {

𝟎                          𝟎 ≤ 𝒚 < 𝒚∗ − 𝟏. 𝟓 
𝒚            𝒚∗ − 𝟏. 𝟓 ≤ 𝒚 ≤ 𝒚∗ + 𝟏. 𝟓
𝟎                        𝒚∗ + 𝟏. 𝟓 < 𝒚 ≤ 𝒚𝑻

             (14) 

Equation (14) is a slightly modified version of the same expression defined in [10] where a constant 

value of 𝐻(𝑦) is replaced with a variable, 𝑦, in and around the axial location of source. This change 

was necessary to ensure that the 𝑦 derivative of 𝐻 exists as required by Equation (9). Thus, following 

the same derivation as for the triangular source above, the expression for 𝐼4 can be evaluated as: 

𝝏𝑯

𝝏𝒚
= {

𝟎                          𝟎 ≤ 𝒚 < 𝒚∗ − 𝟏. 𝟓 
𝟏            𝒚∗ − 𝟏. 𝟓 ≤ 𝒚 ≤ 𝒚∗ + 𝟏. 𝟓
𝟎                        𝒚∗ + 𝟏. 𝟓 < 𝒚 ≤ 𝒚𝑻

             (15) 

Plugging  
𝜕𝐻

𝜕𝑦
 into Equation (9) and the resulting expression for 𝑆̅ into Equation (7) yields: 

𝑰𝟒 = 
𝑹𝒆𝟐

𝟔𝟒𝑨𝟏𝟔𝒁𝟐 ∗
𝟏+𝒌̂𝜼𝟐

𝜼𝟒 ∗ 𝑺𝟎 ∫ 𝝈(𝒙)  ∗ (∫ 𝒙′ ∗ 𝜹(𝒙′ − 𝒙∗) 𝒅𝒙′𝒙𝑻

𝒙
)𝒅𝒙 ∗ ∫ 𝟏 ∗ (𝝀(𝒚))𝒅𝒚

𝒚∗+𝟏.𝟓

𝒚∗−𝟏.𝟓

𝒙𝑻

𝟎
      (16) 

Gaussian Distribution Source 

The expression for the gaussian source is taken from Gunzburger, Wood, and Jordan [8].  

𝑺𝑴 = 𝑺𝟎𝜹(𝒙 − 𝒙∗) ∗ 𝒆−𝜶∗(𝒚−𝒚∗)𝟐             (17) 

A value of 𝛼 was chosen such that 𝑆𝑀 = 10−6 ∗ 𝑆0 at (𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 = 1. Thus, 

𝑺𝑴 = 𝟏𝟎−𝟔𝑺𝟎 = 𝑺𝟎 ∗ 𝒆−𝜶∗𝟏à 𝜶 = − 𝒍𝒏(𝟏𝟎−𝟔)                 (18) 

𝝏𝑺𝑴

𝝏𝒚
= 𝑺𝟎𝜹(𝒙 − 𝒙∗) ∗ −𝟐𝜶(𝒚 − 𝒚∗)𝒆−𝜶((𝒚−𝒚∗))𝟐                            (19) 

𝑺̅ = −
𝑹𝒆𝟐

𝟔𝟒∗𝑨𝟏𝟔∗𝒁𝟐 ∗
𝟏+𝑲̂𝜼𝟐

𝜼𝟒 ∗ (∫ ∫
𝝏𝑺𝑴

𝝏𝒚
𝒅𝒙"𝒅𝒙′

𝒙′

𝟎

𝒙𝑻

𝒙
)                                  (20) 

𝑰𝟒 = 
𝑹𝒆𝟐

𝟔𝟒𝑨𝟏𝟔𝒁𝟐 ∗
𝟏+𝒌̂𝜼𝟐

𝜼𝟒 ∗ 𝑺𝟎 ∫ 𝝈(𝒙)  ∗ (∫ 𝒙′ ∗ 𝜹(𝒙′ − 𝒙∗) 𝒅𝒙′𝒙𝑻

𝒙
)𝒅𝒙 ∗ ∫ 𝝀(𝒚) ∗ −𝟐𝜶(𝒚 −

𝟏

𝟎

𝒙𝑻

𝟎

𝒚∗)𝒆−𝜶∗((𝒚−𝒚∗))𝟐  𝒅𝒚                        (21) 

Delta Sources 

The last model of the source distribution is produced using delta functions in both the radial 

and axial directions. This model is utilized by the finite element solution developed by Witt [4]. The 

derivations of the 𝐼4 integral using the delta functions is obtained as follows: 

𝑺𝑴 = 𝑺𝟎𝜹(𝒙 − 𝒙∗)𝜹(𝒚 − 𝒚∗)               (22) 

𝝏𝑺𝑴

𝝏𝒚
= 𝑺𝟎𝜹(𝒙 − 𝒙∗)𝜹′(𝒚 − 𝒚∗)              (23) 

𝑺̅ = −
𝑹𝒆𝟐

𝟔𝟒∗𝑨𝟏𝟔∗𝒁𝟐 ∗
𝟏+𝑲̂𝜼𝟐

𝜼𝟒 ∗ 𝑺𝟎 ∗ 𝜹′(𝒚 − 𝒚∗) ∗ (∫ ∫ 𝜹(𝒙" − 𝒙∗) 𝒅𝒙"𝒅𝒙′
𝒙′

𝟎

𝒙𝑻

𝒙
)        (24) 

𝑺̅ = −
𝑹𝒆𝟐

𝟔𝟒∗𝑨𝟏𝟔∗𝒁𝟐 ∗
𝟏+𝑲̂𝜼𝟐

𝜼𝟒 ∗ 𝑺𝟎 ∗ 𝜹′(𝒚 − 𝒚∗) ∗ ∫ 𝑯𝒆(𝒙′ − 𝒙∗)𝒅𝒙′
𝒙𝑻

𝒙
, where 𝑯𝒆= Heaviside function    (25)  
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𝑺̅ = −
𝑹𝒆𝟐

𝟔𝟒∗𝑨𝟏𝟔∗𝒁𝟐 ∗
𝟏+𝑲̂𝜼𝟐

𝜼𝟒 ∗ 𝑺𝟎 ∗ 𝜹′(𝒚 − 𝒚∗) ∗ {
𝒙𝑻 − 𝒙∗,     𝒙 ≤ 𝒙∗

𝒙𝑻 − 𝒙,        𝒙 > 𝒙∗      
          (26) 

Plugging Equation (26) into Equation (7) and simplifying the resulting expression yields  

𝑰𝟒 = 
𝑹𝒆𝟐

𝟔𝟒𝑨𝟏𝟔𝒁𝟐 ∗
𝟏+𝒌̂𝜼𝟐

𝜼𝟒 ∗ 𝑺𝟎 ∗ [𝒙𝑻 ∗ ∫ 𝝈(𝒙) 𝒅𝒙
𝒙𝑻

𝟎
− 𝒙∗ ∫ 𝝈(𝒙) 𝒅𝒙

𝒙∗

𝟎
− ∫ 𝒙 ∗ 𝝈(𝒙) 𝒅𝒙

𝒙𝑻

𝒙∗ ] ∗

∫ 𝝀(𝒚) ∗ 𝜹′(𝒚 − 𝒚∗) 𝒅𝒚
𝟏

𝟎
               (27) 

Using the properties of the delta function, the y-integral in Equation (27) can be simplified further as 

𝑰𝟒 = 
𝑹𝒆𝟐

𝟔𝟒𝑨𝟏𝟔𝒁𝟐 ∗
𝟏+𝒌̂𝜼𝟐

𝜼𝟒 ∗ 𝑺𝟎 ∗ [𝒙𝑻 ∗ ∫ 𝝈(𝒙) 𝒅𝒙
𝒙𝑻

𝟎
− 𝒙∗ ∫ 𝝈(𝒙) 𝒅𝒙

𝒙∗

𝟎
− ∫ 𝒙 ∗ 𝝈(𝒙) 𝒅𝒙

𝒙𝑻

𝒙∗ ] ∗ 𝝀′(𝒚∗)       (28) 

Therefore, using Equations (28), (21), (16), and (13), new Matlab© scripts are developed for each to 

solve the finite element solution of the mass flow. 

RESULTS 

The effects of the source functions on the mass flow and isotopic diffusion are explored 

inside a hypothetical Rome centrifuge [11]. The physical and operating parameters for this machine 

can be found readily in literature and has been reiterated below. 

Table 1: Machine parameters for the Rome centrifuge. 

Parameter Variable Unit Rome 

Radius 𝑎 𝑚 0.25 

Length 𝑧𝐻 𝑚 5 

Average gas 

temperature 

𝑇 𝐾 320 

Wall pressure 𝑝 𝑡𝑜𝑟𝑟 100 

Cut 𝜃 − 0.5 

Speed 𝑣 𝑚

𝑠
 600 

Feed flow rate 𝐹 𝑘𝑔𝑈𝐹6

𝑠
 

70 

𝚫𝑻𝑾𝒂𝒍𝒍 -  𝐾 6.92 

Scoop drag -  𝐷𝑦𝑛𝑒𝑠 1983 

 

The values of the countercurrent flow drive parameters including the feed rate, end-to-end 

temperature difference at the rotor wall, and the drag force exerted by the stationary scoop on the 

rotating gas are taken from the ideal calculations performed in [5] for Rome machine spinning at 600 

m/s. For the total flow drive solution, the feed entry is modelled as a source of mass, where each of 

the four different functions described above are used to simulate the spread of the mass source, and 

the scoop is modelled as a sink of angular momentum, which is represented as a point at the location 

of the scoop extraction hole using delta functions in both the radial and axial directions. The 

streamlines of the countercurrent flow and the corresponding concentration gradient for the 235UF6 

isotope obtained for each source are presented below. Natural uranium is used at the feed for the 

diffusion equation solved using finite element analysis as outlined by Paudel [12]. 
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Figure 1: Streamlines of the total drive flow solution obtained using triangular mass source at the 

feed (left) and the corresponding 235U concentration gradient (right) 

 

Figure 2: Streamlines of the total drive flow solution obtained using linear step mass source at the 

feed (left) and the corresponding 235U concentration gradient (right) 

  

Figure 3: Streamlines of the total drive flow solution obtained using delta function mass source at 

the feed (left) and the corresponding 235U concentration gradient (right) 
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Figure 4: Streamlines of the total drive flow solution obtained using gaussian mass source at the 

feed (left) and the corresponding 235U concentration gradient (right) 

The streamlines of the mass flow solution using each of the four different source functions 

have been presented above on the left. The x-axis represents the non-dimensional radial direction of 

the centrifuge from x=0 at the wall to x=15 at the “top of the atmosphere.” The y-axis is the axial 

dimension divided by the rotor height, 𝑍ℎ, that goes from the bottom of the machine at y=0 to the top 

at y=1. It can be observed that much of the flow for each case is concentrated very near the rotor wall 

between x=0 and x=2. The color bar indicates the peaks and troughs of the countercurrent flow field 

with higher elevation corresponding to increasing magnitude shown on the right. For each source, the 

gas enters the centrifuge rotor at the axial midpoint and at roughly around x=12. The point where the 

feed interacts with the rotating gas can be visually observed in all the figures between x=7 and x=10.  

The key distinction between the effects of the different functions on the countercurrent flow 

is on the severity of the separation of the upstream and downstream flows. The streamlines generated 

using the delta function in Figure 3 show the sharpest division of the flow at the axial midpoint 

between the two halves of the centrifuge. This result is expected based on the mathematical 

derivation applied using the delta function as highlighted in Equations (22)-(28). The source defined 

in Equation (22) has the Dirac delta function in both directions. While the discontinuous nature of the 

delta function is accounted for in the radial direction by smoothing its effects using integrations, it is 

elevated further in the axial direction by the derivative in Equation (23). To further understand the 

use of integrations and derivatives, it is essential to examine the non-homogeneous part of the 

Onsager’s equation given by Equation (2). It can be seen that the radial dependence of the source 

functions for energy, J, angular momentum, V, and mass, M, are integrated once or twice, smoothing 

out discontinuities leading to better convergence. On the other hand, the radial, U, and axial, W, 

momentum sources have one or two derivatives requiring functions with continuous derivatives. In 

order to get a smoother numerical convergence, the source functions therefore need to have at least 

one derivative that is continuous. Because the mass source in Equation (2) is derived once in y and 

the Delta source has a discontinuous derivative in that direction, the mass flow plot in Figure 3 

produces sharp gradient around the feed location. This discontinuity in flow is translated onto the 

diffusion equation via the axial mass flux term and results in the sharp gradient around the axial 

midpoint as seen in the concentration distribution plot on the right side of Figure 3. The use of other 

three source types with continuous derivatives reduces this nonphysical break in the concentration 

plots. Based on visual inspection of the flow streamlines and concentration surface plots, the linear 

step mass source function provides the smoothest solutions followed by the triangular source and the 
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gaussian. This can be explained by the fact that the finite element derivation of the flow equations 

makes use of the linear shape functions in the axial direction and thus the linear step source serves as 

the best fit to the approximation of the countercurrent flow. The gaussian source can be improved to 

provide the smoothest solution by selecting a smaller value of the decay constant, 𝛼, which would 

prevent the source from deteriorating at a rapid rate and resulting in accelerated change.  

To better quantify the variability between the sources, the normalized root-mean-square 

(RMS) difference of the stream functions and the 235U concentration gradients is calculated. The 

normalized RMS, d, is given by the following equation: 

𝒅 = [
∫ ∫ (𝛙𝟏−𝛙𝟐)𝟐 𝐝𝐱 𝐝𝐲

𝐱𝐓
𝟎

𝐲𝐓
𝟎

∫ ∫ 𝛙𝟏
𝟐 𝐝𝐱 𝐝𝐲

𝐱𝐓
𝟎

𝐲𝐓
𝟎

]

𝟏

𝟐

,          (29) 

where 𝜓1 is the stream function and/or concentration gradient matrix of source type 1 and 𝜓2 is the 

corresponding matrix of source type 2.  

Table 2: Normalized RMS of the stream function and concentration gradient between the sources 

Source Types, (𝝍𝟏 𝒗𝒔. 𝝍𝟐) d (Stream Function) d (235U Concentration Distribution) 
Triangle vs. Gaussian 0.1686 0.0082 

Triangle vs. Linear Step 0.2010 0.0077 

Linear Step vs. Gaussian 0.2177 0.0050 

Triangle vs. Delta 1.1775 0.0487 

Gaussian vs. Delta 1.3688 0.0450 

Linear Step vs. Delta 1.4217 0.0446 

 

 Table 2 quantifies the differences between each of the four sources and their effects on the 

flow and isotope diffusion. The delta function diverges the most from the rest of the sources as seen 

from Figure 3 and for the reasons discussed above. The normalized RMS values for the concentration 

distribution are a few orders of magnitude smaller than those for the stream functions, which 

indicates the effect of the sources is greater on the mass flow than on the isotopic concentrations. 

This is expected since the 2-D diffusion equation only includes the axial mass flux term from the 

mass flow solution. While the isotopic separation is partially influenced by the mass flux, it is also 

affected greatly by the molecular weight differences between the isotopes and the gas density 

gradient in the centrifuge rotor volume that are not influenced by the type of source functions used. 

CONCLUSIONS 

Four different mathematical functions were taken from literature and incorporated into the finite 

element solution for the mass flow inside a gas centrifuge to comprehend their effects on the source 

distribution. These source functions alter the streamlines of the flow as well as the isotopic 

concentration distribution with the greatest differences seen with the Dirac delta function. The 

discontinuity of the delta function needs to be lessened using smoothing techniques such as the one 

described in Wood and Sanders [3]. The other three sources provide relatively similar flow solutions. 

The impact on the concentration distribution is less than that on the mass flow since it is dictated not 

only by mass flux but also by the pressure and back diffusion of isotopes. The linear step function 

and the Gaussian distribution provide the smoothest countercurrent flow solutions and are anticipated 
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to be the best representation of the physics in the gas centrifuge. Future work can include the 

modification of the mass flow model that can accept any arbitrary function type with continuous 

derivatives of users’ choosing to represent the sources and sinks of mass, momentum, and energy. 
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