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ABSTRACT 
Data science is multidisciplinary field that deals with the study of all aspects of data right from its 

generation to processing to converting it into valuable knowledge source. While data science has a 

wide range of applications, to what extent have new data science methods made their way into 

research related to nuclear waste management and nuclear verification? And which further research 

questions in these fields would particularly benefit from the use of new data science methods? In this 

line, this paper has two objectives: First, to highlight the state-of-the-art of data science in nuclear 

waste management and nuclear verification. Second, to discuss the potential use of data science. Ideas 

for data science in nuclear waste management include, e.g., i) facilitating integration, analytics and 

visualization of data in the comparative selection process for a geological repository site, ii) creating 

a virtual geological repository system, iii) geological repository monitoring over its life cycle phases. 

In nuclear verification, data science can make a significant contribution to i) unattended monitoring 

by using, e.g., seals/tags, surveillance (optical, 2D/3D laser, gamma, etc.), radiation measurements, 

etc.; ii) perimeter monitoring through surveillance (optical, gamma, thermal, etc., radiation 

measurements, etc.), and iii) wide area monitoring using satellite imagery, geophysical monitoring, 

environmental sampling, etc. 

 

 

INTRODUCTION 
Data Science is an interdisciplinary field of science that enables the extraction of insights, patterns, 

and conclusions from both structured and unstructured data through the application of scientifically 

sound methods, processes, algorithms, and systems. Data science is concerned with how very large 

amounts of data (‘big data’) can be collected, processed, prepared, and analyzed. The focus of Data 

science is not on the data itself, but on how it is processed, prepared, and analyzed. Data science is 

concerned with purpose-oriented data analysis and the systematic generation of decision-making aids 

and bases in order to be able to achieve competitive advantages. [1-3] 

 

Big data refers to data volumes that are too large, too complex, too fast-moving, or too weakly 

structured to be analyzed using manual and conventional methods of data processing. Big data is often 

explained by the 4 to 6 V’s: Large volume of data, the speed with which the data is generated and 

transferred (velocity), the range of data types and sources (variety), and the authenticity of data 

(veracity) are the distinguishing features of this data. This definition is often expanded to include 

added business value and the assurance of data quality (validity). [1-3] 



 

Data science can be divided into four core areas: 1) Data engineering comprises all methods and 

processes required for the storage, access, and traceability of data. 2) Data analytics deals with data 

analysis. 3) Data prediction deals with the prediction of topics and situations based on empirical 

knowledge. 4) Machine learning (ML) is a cross-cutting area to the other three areas and stands for 

the development of algorithms that learn from data (experiential knowledge), thereby recognizing 

patterns, generating models and, based on that predict topics and situations based on these patterns 

and models. [4] 

 

Other terms to be mentioned in this context are computational intelligence (CI) [5] and artificial 

intelligence (AI). CI is the theory, design, application, and development of biologically and 

linguistically motivated computational paradigms. Traditionally, the three main pillars of CI are 

neural networks, fuzzy systems, and evolutionary algorithms. However, over time, many nature-

inspired computational paradigms have evolved. AI plays an important role in the development of 

successful intelligent systems, including games and cognitive development systems. In recent years, 

there has been an explosion of research on deep learning, especially deep convolutional neural 

networks. Today, deep learning has become the core method for artificial intelligence. In fact, some 

of the most successful AI systems are based on CI. 

 

While data science has a wide range of applications, to what extent have new data science methods 

made their way into research related to nuclear waste management and nuclear verification? And 

which further research questions in these fields would particularly benefit from the use of new data 

science methods? In this line, this paper has two objectives: First, to highlight the state-of-the-art of 

data science in nuclear waste management and nuclear verification. Second, to discuss the potential 

use of data science.  

 

 

DATA SCIENCE IN NUCLEAR WASTE MANAGEMENT 
In radioactive waste management, waste separation into, for example, combustible and non-

combustible takes place, which increases operational workflow and causes manual errors. Deep 

learning methods can be used to automate waste categorization to maximize categorization efficiency. 

Studies such as [6] demonstrate that a waste detection system based on a Residual Network (ResNet), 

trained on video data recorded from a sorting facility is able to detect four typical radioactive wastes 

(vinyl, rubber, cotton, and paper) with no object with hands (no object) and without hands (empty) 

with an accuracy of 99.67% on a test set. 

 

High-level nuclear waste is vitrified in borosilicate glass and then stored in an underground 

repository. To ensure proper storage, tests are performed with different conditions and glass 

compositions. Based on these data, machine learning methods can be applied to determine the static 

and dynamic class leaching behavior of radioactive waste glasses, and to predict missing data and 

time forecasts. The bagged random forest method was used, which can predict very accurate 

predictions for static leaching even when the glass composition or initial condition variables such as 

glass density are not specified. [7] 

 

The multidisciplinary collaborative repository research project iCross: Integrity of Radioactive Waste 

Repository Systems - Cross-Scale Systems Understanding and Systems Analysis addresses the issue 



of safe and long-lived nuclear waste disposal [8]. The cross-scale research concept of the project 

includes novel approaches using high-end research infrastructures. For example, neural networks are 

used to address the challenges of multiscale-multiphysics-modeling of geochemical processes, which 

is challenging due to the complexity of the chemistry, the heterogeneous microstructure, and the 

different spatial and temporal scales of the processes [9]. The neural network gave excellent results 

compared to exact solution methods for the calculation of the chemical speciation, with better 

computational efficiency and memory demands. NN are thus promising possibilities for large-scale 

3D reactive transport simulations of complex systems. 

 

Deep Learning also expands study of nuclear waste remediation. The monitoring of nuclear waste at 

a decommissioned nuclear power plant or waste repository requires a limited number of drilling wells 

in order to obtain data on geological properties and groundwater using sensors [5]. However, the 

limited number of boreholes causes a lack of sensor data, making it difficult to determine flow 

equations of especially heterogeneous subsurface environments. However, when physics, expert 

knowledge and machine learning methods are combined, it is possible to create a virtual 

representation of such locations based on a small amount of data and to estimate parameters and 

quantify uncertainty in the subsurface flow. As [10] revealed, physics informed GANs, which allow 

a combination of stochastic computational models and observational data, are suitable for this 

purpose. GANs have the advantage of being an unsupervised learning method, learning density 

distributions of data, and even generating data that is similar to real data. This allows them to have 

many different uses, such as simulation problems, in the real world. For synthetic data, it has been 

shown that a physics-constrained GAN architecture can generate spatial fields consistent with our 

knowledge of physics [10]. However, adding real sensor data and real conditions is promising. 

 

 

DATA SCIENCE IN NUCLEAR VERIFICATION 
The IAEA's basic verification measure is nuclear material accountancy (MA), in which inspectors 

perform independent measurements such as counting fuel assemblies and measuring as well as 

verifying radiological signatures using non-destructive analysis (NDA) techniques. The monitoring 

of radiological signatures is of great importance not only for the control of potential contamination 

and the associated health risks but also for the detection of illegal nuclear material and the discovery 

of unwarranted changes in storage and production.  

 

Today a broad range of NDA instruments are available, the IAEA has already authorized over 100 

different types for inspections. The most widely used NDA instruments rely on the detection of 

nuclear radiation. Several studies have already shown how neural networks can favor NDA 

techniques. Single-photon emission tomography (SPECT) techniques are used for safety monitoring 

and quantitative verification of the amount of nuclear material contained in a spent fuel assembly. 

Due to the high Z materials contained in a spent fuel assembly, the quality of the projection image is 

quite low. However, deep learning methods, such as the convolutional autoencoder (CAE) model-

based de-noised image reconstruction technique, enable de-noised image reconstruction and faster 

image acquisition, resulting in an increased overall fuel assembly inspection time [11]. In addition to 

the application of Compton cameras for SPECT, advanced radiation imaging with rotation scatter 

masks (RSM), an inexpensive method with a large field-of-view for identifying the direction of a 

gamma-ray emitting sources, have proven advantages in inspecting containers or transport casks, 

imaging large contaminated areas and nuclear waste characterization. To make the single detector 



imaging system RSM a real imaging device, image reconstruction algorithms such as convolutional 

neural networks can be applied. With these methods the problem of source images that cannot be 

reconstructed accurately can be solved, since application-specific expected source distributions can 

be added for training the model [12]. The potential of using CNNs was demonstrated by [12] using a 

simple, fast network capable of reconstructing simplified RSM data very accurately. The ongoing 

developments in deep learning promise the extension of the simple network to a more complex model 

used for real RSM data and therefore a promising use of RSM with respect to radiation material 

monitoring and localization. Radiation detectors can also be used to characterize gamma ray 

emissions from a sample of interest. Studies indicate that the machine learning algorithms k-nearest 

neighbor (kNN) and support vector machines (SVMs) are able to detect and localize removed 

materials from a given radioactive sample of interest „even when gamma ray emissions are different 

than modeled or expected“ [13]. 

 

Containment and surveillance (C/S) techniques and unattended monitoring supplement the nuclear 

material accounting verification measure by providing additional information to detect undeclared 

access to nuclear material or its movement. A variety of C/S techniques are applied, primarily optical 

surveillance. In addition to images, video recordings allow a deeper understanding of the situation, 

as the image sequences provide further information about actions. Real-time video processing is an 

essential technology in surveillance systems. To support the visual inspection of surveillance videos 

in terms of locating and identifying objects and activities of interest, deep machine learning and 

transfer learning approaches can be used. 

 

Besides original slow CNN approaches, such as sliding window or two-step methods (prediction 

followed by classification), YOLO, a single shot object detector for multiple object detection, has 

been established. Both localization and classification are performed by a single CNN and an image 

only needs to be viewed once. Because YOLO is an efficient CNN, it allows real-time execution on 

an inspector's laptop. Other constraints, such as differences between nuclear facilities and objects of 

interest and the limited amount of training data, can be overcome by using YOLO and transfer 

learning. For example, deep learning applied to image sequences of surveillance videos can help to 

properly detect objects of interest such as objects of a waste repackaging facility and objects at 

simulated spend fuel pools. Furthermore, it can mark them with bounding boxes which could 

significantly increase the efficiency of the review process of an inspector. But deep learning methods 

are not only very promising in the area of object detection. Autoencoders, for example, can be used 

to detect abnormal scenes in a video sequence in real time and to trigger an alarm. [14] 

 

Environmental sampling is also part of the IAEA's verification measures, since the absence of even 

minute traces of a specific nuclear material can guarantee that no activities involving the material 

occurred in the area where environmental samples were taken. For example, automatic detection and 

characterization of anomalous radiological signatures by means of persistent radiation detection and 

mobile detection systems is of great importance. Due to numerous background fluctuations, it is 

important to discriminate between illicit and innocent sources of radioactive material transfer. To 

extract robust features from noisy, high-dimensional datasets, denoising autoencoders have proven to 

be very useful. Autoencoders are neural networks that compress the input information and use this 

information for a correct reconstruction. This principle is also exploited by the Autoencoder Radiation 

Detection Anomaly (ARAD) model, which learns statistical regularities and key components of 

gamma-ray spectra obtained in dynamic background radiation environments [15]. The reconstruction 



accuracy can then be used to detect radiation anomalies. The advantage of learning techniques in this 

case is that the model is able to accurately reconstruct the input spectrum without adding detailed 

detector information as it learns it from the training data. 

 

Like environmental sampling, satellite imagery is also part of remote monitoring. There are many 

applications of satellite imagery in the field of nuclear verification because they provide analysts with 

clear insights into nuclear facilities and nuclear activities worldwide. For the IAEA, commercial 

satellite imagery has become " a very important information source, especially regarding places where 

the IAEA does not have access." [16]. This allows the accuracy and completeness of information 

supplied by States to be verified, for change detection and activity monitoring at nuclear fuel related 

sited and the identification of undeclared sites. Various studies have shown that the use of satellite 

imagery for safeguards purposes can provide valuable information. [17-21]. Since there are an 

increasing number of satellite operators, the data volume is rising rapidly. However, the deluge of 

data, as well as the variety of associated metadata, entails further automation of pre-processing and 

analysis. Deep learning has also proven its strength in the context of earth observation. Thanks to the 

capabilities of CNNs, many change detection, image segmentation and object detection approaches 

have already been developed with great success. For example Smartt et al. [22] developed a machine 

learning algorithm based on CNNs to automatically detect, count and label vehicles to assist human 

analysts.  

 

Similar to satellite imagery, ground-based photographs provide safety-related information such as the 

operational status of a nuclear facility, traffic patterns of heavy vehicles, or construction activities 

within a nuclear facility. Photo contingents, such as those taken during an on-site inspection by an 

IAEA safety inspector, can be usefully supplemented by information from open sources, such as news 

images or images in social media feeds [23]. The increasing availability of open-source images on 

the Internet makes manual verification difficult. As [23] have shown, machine learning based 

automated methods for image search and classification or prioritization can be applied to identify 

security relevant features in image collections, making open source data a useful resource for security 

monitoring. Transfer learning with CNNs demonstrated great potential for image classification of 

data from a cooling tower dataset created on search terms related to the nuclear fuel cycle from the 

website Flickr. Regarding the two-class classification problem (image contains hyperbolic cooling 

tower or not), the approach achieved 90.4% accuracy on a test set. Open-source data and social media 

data thus provide a source of information for international verification of nuclear safeguards when 

used in conjunction with inspection data, government declarations, or other sources of information 

available to the IAEA. 

 

The complexity and diversity of facilities containing safeguarded nuclear material require a 

correspondingly diverse set of verification techniques and equipment. If the different data types, 

image, text or video, are not considered separately, a powerful system of information is created. The 

amount of data is huge, and you do not know in which entry you will find which information and you 

cannot prioritize the data within an acceptable time frame. To support the analyst, there are large-

scale multimodal retrieval systems, which include open-source information, technology, and news 

data in the context of the nuclear fuel cycle. The difficulty is to design them in such a way that they 

are easy to search and filter, and that data can be prioritized based on appropriate queries. Since data 

science has already enabled effective analyses of unstructured, heterogeneous, and complex data, it 

is also a promising solution in this case, as [24] showed. The development of a large-scale system of 



deep neural networks (DNNs) enabled to map and retrieve multimodal data proximal in a multimodal 

feature space. The DNN algorithm applied to open-source science, technology, and intelligence-based 

multimodal datasets enabled the identification of indicators of nuclear proliferation capabilities and 

activities.  

 

Autonomous systems, AI and ML could significantly impact IAEA safeguards verification activities 

in the next decade. [25] Based on an inventory consisting of 14 AI-based methods that could 

potentially be applied to improve a variety of safeguards challenges, two methods were selected to 

explore their application to the safeguards operating environment: 1) unsupervised machine learning 

(ML) One-Class Support Vector Machine (OCSVM) for analysis of large amounts of unattended 

monitoring data; and 2) Convolutional Neural Network. The authors concluded that autonomous 

systems, AI and ML provide important opportunities to improve the effectiveness and efficiency of 

IAEA safeguards. They have the potential to reduce the time and resources needed to implement 

safeguards measures and can help provide important insights, such detecting patterns or anomalies 

that would not otherwise have been observed by human inspectors or analysts. However, AI and ML 

present non-trivial challenges and risks for practical implementation. In particular, the way how 

systems learn, decide, and act must be carefully understood to overcome any barriers to deployment. 

This requires robust testing and evaluation to increase trust, transparency, and acceptance of AI in 

nuclear waste management and nuclear verification. 

 

 

CONCLUSION 
Based on the current state-of-the-art of data science in nuclear waste management and nuclear 

verification, further complex data analysis problems in these areas that may potentially be mitigated 

or solved by data science are being identified. At the same time, data science methods and techniques 

that were established in non-nuclear sectors are being studied about their potential suitability for 

nuclear waste management and nuclear verification. Following the analysis and prioritization of needs 

and objectives of promoting data science in the nuclear domain, specific data science methods and 

techniques will need to be further developed and evaluated. 

 

Ideas for data science in nuclear waste management include, e.g., i) facilitating integration, analytics 

and visualization of data in the comparative selection process for a geological repository site, ii) 

creating a virtual geological repository system, iii) geological repository monitoring over its life cycle 

phases. In nuclear verification, data science can make a significant contribution to i) unattended 

monitoring by using, e.g., seals/tags, surveillance (optical, 2D/3D laser, gamma, etc.), radiation 

measurements, etc.; ii) perimeter monitoring through surveillance (optical, gamma, thermal, etc., 

radiation measurements, etc.), and iii) wide area monitoring using satellite imagery, geophysical 

monitoring, environmental sampling, etc. 
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