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Abstract 
 
In order to securely store old nuclear waste from UNGG reactors out of the Silo 130 at Orano La 
Hague (France), precise sorting means were investigated with the goal of regulating magnesium 
levels in each waste container.  
 
Such a project is meant to prevent the high level release of Hydrogen in order to avoid the 
consequences of this Hydrogen release during ulterior storage. To sort the waste from the Silo 
and quantify the magnesium, Siléane and Orano have come up with a robotized solution provided 
with Vision technology (3D Vision system + Laser) and AI (Machine Learning algorithms). After 
detection, extraction and 3D reconstitution, each part of the waste is analyzed by a predetermined 
tree-based classifier (5 years of development and runs using nuclear waste simulants). These 
algorithms allow the kind of waste that is taken from the Silo to be indentified, whether it is 
Aluminum, Magnesium or Graphite. After a long period of development, runs and inactive tests to 
validate the solution, this project entered a new phase in summer 2019 : after obtaining the ASN 
authorization mid-2019, the industrial plant started with active waste at the end of 2019 and has 
produced 5 containers in a fully supervised modus to test the algorithms’ behaviour on real waste. 
Now, a thorough review of the ML-based classifier is currently underway to optimize and qualify 
the process as active. As of April 2021, the machine is due to work with the upgraded AI-based 
Classifiers in fully autonomous modus. Considered as the latest AI case study in the nuclear 
industry, applications of AI-based recognition technology to material sorting and waste 
conditioning looks promising. 
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1 Context 
 
ORANO La Hague is a leader in recycling nuclear materials. The first facilities at ORANO La 
Hague site were designed to recycle the first generation of nuclear fuel burnt in French gas-cooled 
reactors (Uranium Naturel Graphite Gas, UNGG fuel). The structural parts of the fuel were 
separated from the uranium inner parts by a mechanical process, and the waste was stored in Silos. 
The Silo 130 mainly contains UNGG structural parts, which include graphite (90%) magnesium 
and aluminum waste. It received the first UNGG waste in 1976 until the end of the 1980s. Due to 
the evolution of safety standards, the extraction of this legacy waste is an important task for the 
Orano Group. 

 
Figure 1 : Original UNGG Fuel over view, and bulk waste in the Silo 

The difficulties inherent in the recovery and conditioning of the waste stored in Silo 130 are linked 
in particular to the lack of traceability of the objects stored on the one hand, and the changing 
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nature of this waste over time on the other. The characterization prior to retrieval is based on 
records of its production and calculation. Due to a fire-accident in 1981, the storage in Silo 130 
can be divided in 3 main layers of waste. The lower layer has been flooded since this fire-accident, 
the 2nd layer was temporarily submerged, and the upper layer has never been in contact with water. 
The corrosion kinetic of magnesium is quite different for each layer. 
The aim of the retrieval program is to empty Silo 130 and store the waste in specific barrels within 
optimal safety conditions. The waste would be submerged in water within the barrels, so H2 
production would take place within the barrel and must be evacuated. The barrels are covered by 
a lid which carries gas  exhaust orifices which have PORAL®. sintered metal porous filter In the 
accidental situation of a barrel falling down in storage, the filter media would be flooded, thus 
the gas disposal requirements cannot be met until the barrel is well stored and the filter media 
dried. To prevent accidental situations due to H2 production, the safety requirements are laid down 
to limit the H2 production rate within the barrels by limiting the quantity of magnesium and 
aluminum. 
There are two ways of H2 production: the radiolysis of water by radio-nuclides and the corrosion 
of magnesium and aluminum stored underwater. As the radiolysis of the water cannot be avoided, 
the magnesium materials must be identified throughout the production, and quantified in each 
barrel to reduce the H2 production rate as much as possible. The aluminum material must be 
identified and taken off from the production line. Thus, the system as a whole must ensure optimal 
performance of the correct product recognition rate, and even up to 100% for aluminum detection.  

 
Figure 2: type of waste 

Due to the high radiation dose rate, a human handling process cannot be considered. Each type of 
waste has specific geometric characteristics, both in terms of shape and size: magnesium parts are 
thin and long or with cylindrical portions; aluminum parts are plate-shaped; and graphite parts 
have random geometric properties due to the grinding mechanism in the retrieval grapple 
(Figure 2). Thus, a machine learning approach, relying on tree- based classifiers, was developed 
based on geometric recognition. 
 
2 Description of the chosen solution 

An effective identification requires a process which can pick out each piece individually 
throughout the production line. So that robotic arms took place upstream of the optical process 
of recognition which  is programmed with “pick & place” artificial intelligence-based proprietary 
algorithm named Kamido® by Siléane (Figure 3). Each individual waste part is led under the 
optical AI based recognition process. As the piece passes through a laser ray, a combination of 
optical devices scans the laser ray deformation. A large range of geometric parameters are drawn 
from the 3D reconstruction of each single piece and then the data is analyzed by a tree-based 
classifier. The results are given as a recognition ratio in the range [0 – 1] for each kind of waste. 
The higher ratio corresponds to the higher probability of the waste material family being 
recognized. 



3  

Explanation: The successive vibrations of the 
bin (A) ensure that the feeding spout (B) of each 
robot is continuously fed. Optical cameras 
identify the waste to be picked up and send the 
coordinates to the robot, which will 
automatically pick up the waste one by one. The 
system ensures the choice of the most 
appropriate gripper tool according to the 
geometry of the identified waste: suction cup or 
gripper tool. The robots place each piece of 
waste individually on the conveyor belt (C) of 
its own quantification line. The isolated object 
then passes under the laser triangulation system. 
A dedicated algorithm reconstructs the 3D point 
cloud of the object (Figure 4). 

Figure 3: Kamido® System overview 
 

 
Figure 4 : 3D reconstruction of a graphite piece after passing through the laser ray 

Machine learning (ML) is a set of statistical or geometric tools and computer algorithms that 
automate the construction of a prediction function f from a set of observations called the training 
set. A machine learning model is a specific algorithmic process that builds a prediction function f 
from a training database. The construction of f constitutes the learning or training of the model. A 
prediction corresponds to the evaluation f (x) of the prediction function f on the predictor variables 
of an observation x. 
Supervised learning algorithms make predictions based on a set of examples. With supervised 
learning, you have an input variable that consists of labelled training data and a desired output 
variable. You use an algorithm to analyze the training data to learn the function that maps the 
input to the output. This inferred function maps new, unknown examples by generalizing from the 
training data to anticipate results in novel situations. 
When the data is being used to predict a categorical variable, supervised learning is also called 
classification. This is the case when assigning a label or indicator, for example either dog or cat, 
to an image. When there are only two labels, this is called binary classification. When there are 
more than two categories, the problems are called multi-class classification. (Answers complex 
questions with multiple possible answers, such as: is this A or B or C or D?) 
The choice of the algorithm is crucial. At the start of the project, in addition to the raw performance 
of the system, the need for explicability of the algorithm's operation was very important. A first 
classification algorithm had been designed to test the feasibility of the project (Figure 5: Refer to 

). This algorithm was a simple decision tree only based on an estimation of the shape of an 
object (Does it look more like a rectangle or a circle?) from a few shape parameters (width, height, 
area...) and empirically chosen threshold values. 
As expected, this algorithm obtained correct results on the batch of samples that had been used to 
choose the threshold values, but it was not satisfactory when new objects were presented: 2% of 
“false positive” (graphite identified as magnesium) and 8% of “false negative” (magnesium 
identified as graphite) … In order to improve these results, a random forest algorithm was 
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implemented. (Figure 5 : refer to ). 
Decision trees, random forest and gradient boosting are all algorithms based on decision trees. 
There are many variants of decision trees, but they all do the same thing – subdivide the feature 
space into regions with mostly the same label. Decision trees are easy to understand and 
implement. However, they tend to over-fit data when we exhaust the branches and go very deep 
with the trees. Random Forrest and gradient boosting are two popular ways to use tree algorithms 
to achieve good accuracy as well as overcoming the over-fitting problem. Random forest or 
Random Decision Forest is a method that operates by constructing multiple Decision Trees during 
training phase. The Decision of the majority of the trees is chosen by random forest as the final 
decision. 

 

 
 

Figure 5: Which machine learning algorithm should I use? (Hui, 2020) 

In summary, the advantages and disadvantages of a random forest algorithm are summarised in 
the table below (Figure 6): 

 Pros Cons 
 The overfitting problem is less pronounced 
 Can be used for feature engineering i.e. for 

identifying the most important features 
among the all available features in the 
training dataset 

 Runs very well on large databases 
 Extremely flexible and have very high 

accuracy 
 No need for preparation of the input data 

o Complexity 
o Requires a lot of computational resources 
o Time-consuming 
o Need to choose the number of trees 

Figure 6: pros & cons of random forest (BestMachineLearningAlgorithmsforClassification, 2018) 
 

The effectiveness of that kind of machine learning algorithm depends on a good representative 
range of waste samples taught to the classifier. Normally it takes several hundreds or even 
thousands of images to obtain a suitable algorithm. The input products consist of real waste from 
Silo 130. At the start of the project, no samples were taken from the Silo to characterise each 
family of waste (Graphite, Magnesium, Aluminum, etc.). The composition of the first batches and 
therefore of the real waste that will be the subject of this active start-up is therefore not known a 
priori.  
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A selected range of samples was defined to train the algorithm to identify the objects. These 
samples were defined by taking into account all available information: production records, UNGG 
fuel fabrication data sheets, consequences of more than 30 years of underwater storage by 
analysing the corrosion kinetic in laboratory, etc. Some samples were drawn from the Silo. 
Simulants of each category were produced. These raw objects were mechanically modified and 
surface treated to obtain the most representative baseline possible. 

 
 

      
CAD Data from 
fuel datasheets 

New Sample made 
from CAD 

Modified Sample / 
deformations 

simulated 

Point cloud image 
from sytem of 

modified sample 

Real waste from insite 
storage 

Point cloud image of 
real waste 

Figure 7 : Figures of seal weld, from simulants CAD Data to real waste point cloud 
 

For the development and qualification of the machine more than 575 magnesium products and 67 
Aluminum items were produced and scanned with the system among a total volume of 1m3 
graphite representative simulants. 
Some families contain objects of the same shape but different sizes. A data augmentation could 
have been done to take this scale factor into account. We preferred to build simulants of different 
sizes to qualify the other modules of the system (bin-picking subsystem for example).  
 
3 Real life 

All the training was done with waste samples designed from production records, drawn samples 
and estimated effects of corrosion on magnesium parts. So even if these samples are as similar as 
possible to real waste, it is not possible to be sure that the built random forest algorithm decision 
software will be able to correctly identify the waste that will be extracted from the Silo. It is agreed 
that at the start of production with real waste, the performance will not be sufficient. In summary, 
the initial performance is as follows. 

 

  
 

Figure 8 : performance of classifier#1 / objects of drum#1 (real waste) 

As expected, the initial training, i.e. carried out on the simulants, did not give sufficient results for 
the automatic production of the cell from the start. The performance of the first version of Random 
Forest is not sufficient for stand-alone production. (See Figure 8). A significant number of 
aluminum covers (25) are not recognised by the system. The detailed analysis of the images gives 
a logical explanation for this state. In the figure, we can see a cover as it was learned by the system 

Test with simulants Real life production 
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and in the Figure 10, Three aluminum covers. The first one (A) looks like the images in the training 
set, and the confidence rate is good. The second (B) and third (C) correspond to a crushed lid. 
This type of object had never been seen by the algorithm.  
Then it is necessary to anticipate the production launch and the possible problems that may arise. 
A strategy was developed prior to going into active production. This strategy makes it possible to 
start production while continuing to optimise the classification algorithm. 
 

 
Figure 9 : Project plan and strategy from 1st drum. 

 
As a result, the production of the first dozen drums is carried out in a fully assisted mode. All 
products are individually observed by the operator on the recognition conveyor. If necessary, the 
conveyor stops to give the operator time to indicate the correct class. Methodical tests have been 
carried out in order to define a well calibrated classifier which is able to recognize magnesium 
parts, avoiding “false-negatives” (magnesium identified as graphite) and “false-positives” 
(graphite identified as magnesium). This phase  makes it possible to build up a large database of 
annotated images, i.e. with the truth about the nature of the object. (Figure 9: database size  ) 
In a second phase (Figure 9: step 2 ), the production is in a hybrid mode. The operator is only 
called (a procedure called DVO) upon for products for which the confidence level of the 
classification is not sufficient. The confidence level ∆S of the system is a numerical value derived 
from the classification algorithm. In the decision forest algorithm, each tree votes for the class that 
it considers most suitable. Each tree is different because it has only been trained on a subset of the 
global training base. Thus, the output of the decision forest algorithm is a table indicating the 
probability of the current object belonging to each class (Figure 10, column “Distribution of 
probabilities”). Confidence ∆S is then defined as the difference between the probabilities of the 
two most probable classes. 
In the example of the Figure 10, object A has a good confidence rate while the confidence of the 
object B is rather low. The information given by the operator during the execution of the DVO 
procedure for the object B can confirm the correct choice made by the algorithm. On the other 
hand, the category of object C is not correctly determined by the algorithm which classifies the 
object as graphite. The calculated confidence rate is very low, as the algorithm proposes the classes 
aluminum and graphite with similar probabilities. The DVO procedure is called and the ground 
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truth is correctly entered in the database. It is reasonable to assume that after further training, this 
type of object will be correctly classified in the future. 
The question arises as to how much product is needed to validate the system. The determination 
of the minimum sample size of the populations of each category" (seal weld, aluminum, centering 
device) was calculated using the formulas from COCHRAN's methods (G.COCHRAN, 1977), 
assuming that the sampling is carried out by polling. 
Again, it is customary to split the base into two non-equal parts: 80% for training and 20% for 
testing. On the other hand, the distribution of products is not uniform, and the critical products are 
the least present (Figure 11), aluminum objects represent less than 0.18% of the objects extracted 
from the first 6 drums. Initial projections envisage a number of drums between 10 and 40 to have 
a stabilised system.  

Figure 10 : colour photo, 3D point cloud and classification for 3 different objects. the verdict is 
that given by the trained classifier on the simulants 

 
 

 
 

Figure 11 : Repartition of the classes. The number of products in the graph on the right is in 
logarithmic scale 
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In order to prepare the training of the algorithm, a specific software has been developed (Figure 
12). The first feature is the visualisation of the data. This data is divided into two groups: training 
data and test data. The software also serves as a parameterisation interface for the creation of 
training. The software also allows the algorithm to be run with the training created on the basis of 
the tests. The performance per material type can be visualised. This software runs on a computer 
not connected to the system. Only a new version of Random Forest algorithm that performs better 
than the previous version is deployed on the machine (  Figure 9). All these processes are very 
rigorously qualified.  

 
Figure 12: MMI of the software developped to create algorithms 

 
Using this software, new training was performed using the data from the first 6 barrels. As a 
reminder, this data is divided into training data and test data. Significant improvements (Figure 
13) have already been observed, although the desired number of annotated images has not yet 
been reached. 
 

   
Initial classifieur optimised classifier 

 
Figure 13: Performance of an improved version of the classification algorithm trained on real 

images compared to the performance of the algorithm trained only on simulants 
 
For the system to be optimal and in order to allow the operator to use the system with greater 
confidence, various changes have been made since it was installed on the La Hague site.  
The acquisition system operates in the environment of the hot cell, which has its own white 
lighting. This lighting is dedicated to maintenance operations but also to monitoring the process 
in general during production. It turns out that this white lighting, which is quite bright, constitutes 
noise for the 3D acquisition system. In order to improve the accuracy of the system, it is desirable 
to improve the SNR of the laser line seen by the camera. Therefore, optical filters were added in 
front of the illuminators to minimise the light power at the laser wavelength. This modification 
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improved the quality of the 3D reconstructions in general, to the detriment of the visual rendering 
of the colour cameras dedicated to observation and installed in the cell. A white balance was able 
to partially compensate for this degradation. 
Initially, the operator only had the 3D point cloud of the object displayed on the supervision 
software to indicate the class of the current object. A colour camera filming the waste stream was 
added to the system. The operator now has a colour photo of the object to indicate the class. 
Operation is faster and more accurate. 

 
 

 

Figure 14 : Determining the class of the object is complicated for a human with only point cloud 
information (left). It is easier with the product picture (right). 

 
In order to improve the reliability of the designations made by the operator, it is now possible to 
activate a two-step validation. The addition of this procedure allows the system to limit the number 
of wrong designations due to a handling error.  
Finally, statistical tools have been added to the supervision software, allowing for the retrieval of 
indicators that previously required an offline post pressing. 
 
4 Conclusion 
 
There is a real desire to manage the deployment of the algorithm in this particularly sensitive area 
from a security point of view. No self-learning is foreseen as the classifier must be supervised at 
all times but all tools are ready to learn a new classifier or to improve an existing one with the 
possibility to check its results on a large database of 3D reconstructions. 
The success factor of the implementation of a waste sorting system based on artificial intelligence 
lies in the ability of the industrialist to precisely define the inventory of waste present in the 
storage. A rigorous analysis of the storage conditions and the transformations induced by the 
mechanical processes must be carried out in order to best define the expected shape of the waste 
simulants used for inactive qualification. 
The start of the process with the real waste cannot be done directly in automatic mode. An 
intermediate step-by-step mode is necessary to check the consistency of the training carried out 
on the basis of the waste simulants with respect to the real waste. 
The time and volume of waste required for the active qualification of the sorting process based on 
artificial intelligence is directly linked to the representativeness of the simulants on the one hand 
and to the risk of being confronted with new disturbing elements that cannot be controlled (quality 
of lighting on site, operating conditions, etc.) on the other. 
Despite all the precautions taken to ensure that the simulants were as representative as possible, 
the storage conditions in the Silo brought an expected uncertainty in the shape and surface 
condition of the real waste. A re-training or even an optimisation of the waste sorting algorithms 
was therefore an option considered when starting up the installation with real waste. 
Similarly, as the Silo continues to be emptied, it is expected that the shape of the waste will change 
as a result of being stored underwater, and a stratum phenomenon is identified which leads to 
variable corrosion kinetics of the magnesium and aluminum waste depending on its depth and the 
time spent underwater. This phenomenon leads to a periodic verification of the non-regression of 
the sorting system and, if necessary, a re-training of the system in order to integrate a possible 
notable evolution of the geometric characteristics of the waste to be sorted. 
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Before creating a new learning, the data must be prepared. The objective of data preparation is to 
create a homogeneous quality dataset with a consistent and well-defined structure and formats. 
Dealing with missing values, removing outliers, redefining the scales of the parameters to 
homogenise their variability are the main actions carried out during this phase. 
Applied to our problem, this principle consists of removing from the database all images that are 
not of interest. The software automatically saves all images, including those taken during 
maintenance test periods. These images are not of significant interest for the learning or testing 
phase. It is wise to remove them from the database. 
By analysing the data, we realise that the distribution follows a normal law. An optimisation to be 
evaluated is the possibility of calling the DVO procedure for objects that are too far from the 
mean. This strategy will make it possible to quickly isolate the out-of-norm objects. 

 
Figure 15: Distribution of the average height value (mm) for the product set 

 
With a proper and well-designed AI system, it is possible today to bring robotics systems an 
interesting capacity of agility and autonomy when the input data of the process to automatize is 
uncertain or even unavailable. It is the purpose of Siléane to develop machines associating robotics 
with various sensors and AI in order to take up the challenges faced by the operating industrials. 
This specific project with Orano La Hague on Silo 130 is an exemplary project in that matter, as 
the automation has allowed the project to be launched and operated in a short time frame and 
within a reduced space, when a mechanical and human-led solution would have had much bigger 
costs regarding the available financial resources and most of all regarding the implied dosimetry 
costs for the operators (ALARA principle). The worst case being the most probable without 
automation : leaving the project unmanaged as a legacy to the next generation. Research and 
Development to make autonomous robotics safe and sound for operations in the nuclear industry 
is and stays one of Siléane’s most focal project of the last and next decade and the partnership 
with Orano brings concrete applications and pragmatism to make essential technological advances 
in various fields. And now, along with autonomous waste sorting solutions, autonomous 
dismantling coupled with radiological measurement is to become operational. 
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