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ABSTRACT

Machine learning is a powerful data analysis technique; however, many facets must be optimized to
reap the greatest benefits. Model selection and hyper-parameter tuning are important areas for opti-
mization, but for certain scenarios, domain-aware feature engineering may lead to the greatest increase
in model utility. Feature engineering can greatly contribute to increased model performance, and can
also provide insight into the machine learning process, thus enhancing model explainability. To illus-
trate this, feature engineering was explored for the challenge of source localization in complicated and
obstructed environments. Datasets were simulated with various gamma ray sources located up to five
meters away from a four detector Nal array for three cases: no background or obstructions, with back-
ground, and with obstructions. A random forest model was used and tasked with predicting the angle
at which the source was located utilizing only a static measurement from an array of Nal detectors.
The simplest choice of input features for this scenario was the total counts received in each detector.
Additional features were also explored, including counts of photopeak and Compton continuum re-
gions, and simple spectral binning schemes. Results show that domain aware feature engineering can
improve model performance, even when the detection data includes complications from background
contributions or obstructions. Across scenarios, accuracy was improved by close to a factor of two,
and the mean absolute error of the angular predictions was improved by several degrees.

INTRODUCTION

Machine learning (ML) has shown great promise as an analysis method in a variety of radiation de-
tection applications including pulse shape discrimination [1, 2], isotope identification [3, 4], and ra-
diation source localization [5, 6]. Many software packages and libraries allow for simple imple-
mentation of standard ML algorithms [7, 8] which can be optimized in a number of ways, including
hyper-parameter tuning [9]. In certain cases, however, domain-aware feature engineering can comple-
ment the data-driven approach of ML and lead to greater increases in model performance and utility.



Broadly speaking, feature engineering focuses on extracting physically motivated features from the
raw data and presenting those features to the ML algorithm in an optimized manner.

One benefit of ML is that it is often times no harder to implement an algorithm that analyzes high
dimensional (or many feature) data than lower dimensional data. While conventional or analytical
approaches can also analyze higher dimensional data, it may not be intuitive how each dimension
should be incorporated or weighted. Through feature engineering, the user can, in essence, transfer the
domain knowledge to the ML algorithm, which will incorporate and optimally weight the dimensions.
This process can allow for more effective representation of the data and increase ML performance.
While feature engineering leverages the physical domain, it is also possible that further insight can be
gained by analyzing the usefulness of individual features to the ML model’s decision making process.
This in turn can lead to increased performance, as well as enhanced model explanability.

This work investigated the benefits of feature engineering data from a static source localization
application with an array of Nal detectors. The physical basis of the angular prediction capability from
a static acquisition using the detector array arises from two simultaneous phenomenon: the differences
in the solid angle subtended by each detector from the source, and differing amounts of partial attenu-
ation or array self-occlusion experienced by each detector. For a fixed distance, and with sufficiently
high statistics, each angular position will have a unique combination of normalized detector responses
because of the solid angle and self-occlusion effects. Similar directional detection problems have been
discussed in the literature making use of a least-squares based comparison to a prepopulated reference
table to make the angular predictions [10, 11]. Here, a random forest (RF) algorithm is used. Utiliz-
ing Monte Carlo n-Particle (MCNP6) [12] simulations to generate training and testing data, feature
engineering is explored for this application in a simple case (no background, no obstructions), a case
were background is present, and a case where obstructions are introduced.

METHODS

Array

The detector array used in this work consisted of four 5.08 cm by 10.16 cm by 40.64 cm (2”°x4”x16”)
Nal detectors arranged in a 30 cm square with respect to their inner faces, with the long axis orthogo-
nal to the source plane. A gamma ray emitting point source was placed up to five meters away from
the detector array center, and a single, static acquisition was taken. Based on the subtle differences
between the counts received in each detector, the angular component of the source location was pre-
dicted. Figure 1 illustrates the simulated responses of the detectors in the array for a source at a fixed
distance as a function of angle.

Algorithm

The ML algorithm used in this work, Random Forest (RF), consists of an ensemble of individual
decision trees. Each decision tree acts as a system of optimized if-then type pathways that aim to
sufficiently separate the data based on the input features. RFs are computationally efficient, easy to
implement, and possess the additional benefit of having a convenient way of quantifying feature im-
portance, called the mean decrease in impurity. This approach essentially notes the effectiveness of a
certain feature in acting as a decision node compared to the other features.

Input Features
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Figure 1. Simulated angular array response to a ®®Co source 3 m from array center. Counts are
normalized to unity, and diamonds represent detector position.

Most of the input features used came from the spectra each detector produced during an acquisition.
Some features made use of additional contextual information available in certain applications, such as
those based on isotope identification that could be performed on the collected spectra. The simplest
input feature scheme consisted of the total counts from each detector, which were normalized to unity
as shown in Figure 1. For each detector, if isotopic information was made available, counts could
be split into photopeak (P) and Compton continuum regions (C) to be used as seperate features. The
motivation for this selection was that these two feature types are associated with the two facets of
the modality that provide directional information — solid angle and self-occlusion. Counts under the
photopeak region are nominally unattenuated, and are related to the differences in solid angle of the
detectors. By contrast, many counts under the Compton region have been attenuated by the array
itself, and thus loosely correspond to the effects of self-occlusion. In reality, both solid angle and
self-occlusion contribute to changes in photopeak and Compton counts, however the magnitude of the
contributions were different. It was hypothesized that separating the total counts into distinct features
corresponding to different phenomenon in the physical domain will provide more relevant degrees of
freedom for the model to /earn.

Extending this concept, energy bins can also be used as input features given the spectroscopic
qualities of Nal, essentially acting as down sampled versions of a raw detector spectra. This could
allow the algorithms to further leverage the energy dependent phenomena of the scenario, without
using the entire spectra, which may be computationally inefficient or filled with low signal-to-noise-
ratio bin. A feature that captured the isotope (I) was also used, numerically representing either ®°Co,
37Cs, or "’Ir. Additionally, input features were created that put the detectors in order based on the
counts received (D). While this detector order feature could be redundant, it may provide utility in that
it effectively narrows down the quadrant the source was likely to be located in.

Stationary detector arrays could be deployed with additional contextual sensors, such as LIDAR
or video cameras, which could allow the system to know if obstructions were present within the range
of interest. To emulate this, a binary input feature was also created to capture whether or not obstruc-
tions were present (O). The features described in this section were used in various combinations for



the different experiments. While other scenarios may benefit from additional features, the features
used here were highlighted to demonstrate the utility of feature engineering, not to make a case for
any one specific feature.

Experiments

To investigate the effects of implementing engineered features, datasets of individual ®°Co, '*’Cs, and
2 [rmeasurements were simulated using MCNP6. The detector array, supporting electronics and a
concrete floor were modeled. For each trial a point source was simulated at a random angular position
a distance of 0.5-5 m from the array center on a two dimensional plane. Ten million source particles,
emitted isotropically, were simulated for all scenarios. An F8 pulse height tally was captured for each
trial, and Gaussian energy broadening was applied based on the measured energy resolution of an
analogous laboratory system[6].

Three scenarios were considered in this work. The first, the simple case, did not include a back-
ground source or obstructions. This was intended to isolate the effects of feature engineering and
capture the full potential in an idealized scenario. For this experiment, a 30,000 trial data set was used
with 10,000 trials each of ®Co, 13’Cs, and '**Ir. The performance of the RF was quantified using the
mean absolute error in angular predictions (MAE), as well as the accuracy (ACC), which was defined
as the percentage of trials that were correct within one degree. To study the effects of feature engineer-
ing, three sets of input features were used. The first set consisted of the simple input feature scheme
(totals), the second consisted of P, C, I, and D, and the third consisted of the energy bins.

The second experiment investigated the effects of background in the scenario that the background
was known or constant, only fluctuating according to nominal Poisson statistics. For these trials, a
two minute background spectra acquired in the laboratory was injected into each MCNP6 FS8 tally
and Poisson randomly sampled. This roughly emulated the typical Poisson variation of a constant
background. The MCNP tally was correlated to represent a two minute count time of a 50 ;Ci °Co
source. This process was done for ®°Co, *’Cs, and '’Ir. An example spectra for *°Co is shown in
Figure 2.
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Figure 2. Simulated ®Co spectra used in the background experiment.

Background was addressed in two ways. The first was simple subtraction, shown in green in
Figure 2, in which a background spectra was subtracted channel wise from each detector. Then, the



same procedure was used as in the simple case. The second way of handling background was to keep
the net counts for each spectra, and create additional input features based on the background spectra,
analogous to the existing input features. Specifically the total counts, P, C, and energy bins.

The last experiment investigated the effects of obstructions. The same procedure was used for the
simple case, with the exception that half of the simulated trials included various concrete obstructions
modeled after cinder blocks. It is worth noting that this does not mean half the trials were obstructed,
just that obstructions were present for half the trials. These obstructions were located in the 45°-
135° quadrant relative to Figure 1. A simple schematic of the obstructions is shown in Figure 3. In

Figure 3. Schematic of the obstructed scenario. Nal crystals blue, concrete obstructions shown
in red.

addition to the input features of the simple case, the binary input feature that captured whether or
not a source was present was used emulating the discussed scenario in which additional contextual
awareness would be available. Obstructions with random locations are reserved for future work.

While some decline in performance was expected for the second two experiments due to the in-
creased complexity, the experiments were designed to showcase the utility of feature engineering,
even in complex environments.

RESULTS

Before the individual experiments were analyzed, the optimal number of equally spaced energy bins
to be used as input features had to be determined. To do this, the RF was tested and trained using a
range of energy bins from 3-21. The results of this study are shown in Figure 4.

The ACC and MAE both plateaued above 15 bins. Thus, to optimize these parameters without
increasing overall algorithm complexity, 15 bins were used for the remainder of this work. While
more energy bins would lead to more information, the signal-to-noise per bin would also decrease.
Thus, the true optimal number of bins would depend on the specific data and algorithmic approaches,
the work presented here serves as a proof of concept for this method.

Simple Case Expirement
Shown in Figure 5 is the true angle plotted against the predicted value for the three sets of input features
on the simple case test data. While the entire range of angles were tested, for visual clarity only one
quartile is shown as it is representative of the entire range due to the array symmetry.

The dominant element in Figure 5 is the diagonal, corresponding to predictions close to the true
value. The cross-like artifact centered at 90° was a result of the symmetry about each detector (located
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Figure 4. RF performance as a function of the number of equally spaced energy bins used as
input features.
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Figure 5. True versus predicted angular values for the various input feature selections with the
simple case experiment. Here, P, C, I, and D correspond to photopeak, Compton continuum,
isotope, and detector order.

at 0°,90°, 190°, and 270°). On close inspection of Figure 1, the symmetry becomes clear. Immediately
surrounding each detector (+15°), there was a reflective symmetry that causes certain reflected points
to have similar responses. The benefit of feature engineering can be seen in the tighter distribution
for the P,C,I,D features about the diagonal compared to the totals distribution, and the even tighter
distortion for the bins. Additionally, the effect of the symmetry related cross feature was notably less
severe for the energy bins distribution. These benefits are quantified in Table 1.

Figure 6 shows the feature importance for the P, C, I, and D features. Features extracted from
the photopeak and Compton region were all considered important, which implies they contributed to
the decision making process of the RF. The D feature has near zero importance, revealing that it did



Table 1. Results for the Simple Case

Input Features

MAE

ACC

Totals

3.05°

33.4%
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Figure 6. Feature importance for P, C, I, and D features used in the simple case experiment.

not contain much (or any) information helpful for distinguishing different angles. The 1.2° reduction
in MAE and 8% increase in ACC showed the clear benefit of feature engineering, and the feature
importance analysis showed that some features were more useful than others. It was likely the case
that the information provided by the I and D features was largely captured within the other features. It
was hypothesised that as P and C features point to physically different processes, there will be some
information gain not captured by total features alone. The feature analysis confirmed this, and also
points to those features alone being able to capture isotopic or energy information, despite not provid-
ing any explicit energy information. Using the energy binning scheme led to an additional 1° decrease
in MAE and 18% increase in ACC, further showing how domain-informed choices of features can
greatly improve ML performance.

Background

Results for the background experiment are given in Table 2, where BGS indicates the data that was
background subtracted and BG + indicates the data in which the background was input via various
features in lieu of subtraction. The distribution of true versus predicted angle are not included due to
their similarity to Figure 5. While a slight dip in performance was seen when compared to the sim-
ple case, the benefits of feature engineering are still clear. While there was no notable difference in
performance between the two approaches (subtracting the background verses using the background as
features), in situations where the background in unknown or highly variable, incorporation of back-
ground based input features could be of use. The feature importance analysis for these cases looked
similar to that of Figure 6, with low importance given to the background features.

Obstructions



Table 2. Results for the Background Experiment

Input Features MAE ACC
BGS: Totals 3.14° 33.0%
BGS: P,C,I,D 1.84° 40.2%

BGS: Bins 0.94° 59.4%
BG + Totals 3.19° 31.3%
BG +P,C,I,LD 1.73° 40.0%
BG + Bins 1.65° 52.9%

The results for the obstruction experiment are given in Table 3, and the predictions are plotted in

Figure 7.

Table 3. Results for the Obstruction Experiment

Input Features MAE ACC
Totals 3.46° 37.1%
P,C,I,D 1.51° 45.5%
Bins 0.46° 91.61%
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Figure 7. True versus predicted angular values for the various input feature selections with the
obstruction experiment.

The inclusion of obstructions had two very different effects on the data arising from a combination
of distance and energy related effects. In certain cases, the obstructions lead to low or almost zero
counts in some detectors. This drastically distorts the angular response, especially in the cases where
different detectors experience notably different attenuation effects. Sometimes, these distortions can
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lead to the response at one angle looking like the response at a different angle. In these cases, the RF
was effectively confused, and may not have provided a good prediction. On the other hand, as the
specific obstructions were included in the training data (emulating training on a known environment),
these distortions can act as a special signature, which the RF will flag as a certain angle. In these cases,
the RF can actually do extremely well, as evident by Table 3.

Here again, the benefit of feature engineering is clear. By using the same data, just presented to
the model in a different way, a 3° improvement in the MAE was seen. The feature importance analysis
looked similar to Figure 6, with low importance given to obstruction indicator feature.

CONCLUSION

Feature engineering was explored for the application of static gamma ray source localization using
an array of Nal detectors. This work demonstrated the utility of domain driven feature selection. A
random forest algorithm was used with the task of predicting the angular component of the source’s
location. Simulated datasets were created to emulate complicated environments, including Poisson
variable background, and concrete obstructions. The raw data from these simulations consisted of
gamma ray counts for each of the detectors. The simplest, non-engineered, choice of input features
was taken as the normalized detector totals. Additional input features investigated included the pho-
topeak area, the Compton continuum, the isotope class, and options to capture the background and
obstructions. Using these features improved accuracy by over 7% across datasets, while reducing the
MAE in angular predictions by close to 1.3°. Through an analysis of feature importance, it was seen
that photopeak and Compton continuum based features were able to sufficiently capture isotopic or
energy information relevant to the problem. Using an energy binning scheme as the input features
led to further improvements, increasing accuracy by over 20% and reducing the(MAE) by over 2°
compared to using the totals. It is important to note that these improvements were all derived from the
same data processed by the same exact algorithm, the only difference being how the data was feature
engineered. With non-engineered features, complications such as background and obstructions can
lead to a decrease in algorithm performance. With engineered features, this decrease can be partially
mitigated. As an example, using only the totals as input features led to an MAE of 3.04° with no
obstructions and increased to 3.46° with obstructions. Using energy bins as input features actually led
to an increase in performance under the same conditions, with an MAE of 0.80° without obstructions
and 0.46° with obstructions. While other scenarios may benefit from different specific input features,
it is hypothesised that all scenarios would benefit from feature engineering. The experiments shown
in this work highlight not only the utility of machine learning for radiation detection applications, but
also illustrate that domain aware feature engineering can increase performance and robustness while
using the same data and algorithms.

Future work will include investigating scenarios in which the background is variable or unknown,
and in which obstruction locations are not well defined. Additionally, steps will be taken to quantify
the performance of input features such as those presented here on real word detection data.
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