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ABSTRACT 

Pebble Bed Reactors are fueled with fuel pebbles that are circulated multiple times through the 

reactor vessel before discharge. During the normal operation of a PBR, ejected pebbles are either 

returned to the reactor or discharged as spent or damaged fuel depending on the fuel burnup and 

physical condition of the pebbles.  The burnup measurement is usually based on detected 

radiation signatures of fission products accumulated in the pebble fuel over irradiation in the 

core. Previous research has shown that height of photopeaks of fission products, such as 134Cs, 
137Cs, 154Eu, etc., can be used independently or in combination to infer or predict the level of 

burnup in the fuel. However, it remains challenging to measure such complex sources due to 

self-shielding effects, strong radiation background and intervening materials. Another 

operational challenge is the required high throughput of pebbles undergoing burnup 

measurement, which necessitates limited measurement time and thus impacts quality of 

measured gamma-ray spectra. Hence, advanced spectral analysis methods are needed to analyze 

the noisy gamma spectra and predict the burnup values. This paper proposes to use machine 

learning (ML) method to interpret gamma-ray spectra and predict the burnup values of the 

pebbles.  ML has achieved widespread success and adoption across a few domains that require 

pattern recognition and analysis in varied data types. In this work, three proven ML approaches – 

multilayer perceptron’s (MLPs), convolutional neural networks, and transformers – are applied 

to the task of predicting fuel burnup from measured gamma spectra, and a dataset of simulated 

spectra is compiled for training and validation of the ML models.  This paper discusses the 

network architecture of these three ML approaches and compare the performance of the simplest 

of these (MLPs) to a standard linear regression. 

INTRODUCTION 

Pebble Bed Reactors (PBRs) are fueled with fuel items with roughly the size of a tennis ball that 

are circulated multiple times through the reactor vessel before discharge. These pebbles are 

formed from TRIstructural ISOtropic (TRISO) fuel particles, which are composed of a minute 

fuel kernel of uranium dioxide or uranium oxycarbide surrounded by multiple layers of highly 

durable and impermeable coating.  During the normal operation of a PBR, ejected pebbles are 
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returned to the reactor or discharged depending on the fuel burnup and physical condition.   

The burnup measurement is usually based on detected radiation signatures of fission products 

accumulated in the TRISO particle kernel over irradiation in the core. Years of research has 

shown that measurements of fission products, such as 134Cs, 137Cs, 154Eu, etc., can be applied 

independently or in combination to infer or predict the level of burnup in the fuel (Akyurek, 

Tucker and Usman 2014). A simple criterion for selecting an isotope for burnup indication is the 

exhibition of a strong gamma photopeak. However, it remains challenging to measure this 

complex source due to self-shielding effects, strong radiation background and intervening 

materials. Another challenge in this measurement is the required high throughput in the burnup 

measurements. Accommodating this throughput necessitates limited measurement time and thus 

impacts detection efficiency. A high-performing spectral analysis method is therefore required to 

identify patterns swiftly and accurately in the time-constrained gamma spectrum measurements.  

This study uses machine learning (ML) methods to interpret gamma-ray spectra and predict the 

burnup values of the pebbles.  ML has achieved widespread success and adoption across 

numerous domains that require pattern recognition and analysis in varied data types (Butler 

2018) (Carleo 2019). Modern deep learning approaches have supplanted hand-crafted features by 

learning entirely novel, yet meaningful, features and data representations directly from the raw 

data via deep neural network architectures; this has led to state-of-the-art and even superhuman 

performance on a broad range of detection, interpretive, and analytical tasks.  In this work, we 

applied three proven ML approaches – multilayer perceptron (MLPs), convolutional neural 

networks (CNNs), and transformers – to the task of predicting fuel burnup from measured 

gamma spectra.  To train and test the ML models, we used SERPENT (Leppanen 2015) and 

GADRAS (Horne, et al. 2014) to model the fuel pebbles and the burnup process and simulate the 

spectra as the response of a high energy resolution high purity germanium (HPGe) detector. The 

performance of the ML models was compared to the photopeak-based linear regression method. 

MODELING AND SIMULATION 

Overall Modeling and Simulation Workflow 

Modeling and simulation of burnup measurement in this work was done in two steps. The first 

step involved a SERPENT Monte Carlo (MC) simulation (Chersola, et al. 2014) to compute the 

burnup of a modeled pebble in a PBR core. The simulation produced isotopic compositions of a 

pebble after passing through the PBR core axially. Following that, the transport of gamma 

photons to the surface of the pebble was simulated to obtain the photon flux information coming 

out of the pebble.  This second simulation was also performed in SERPENT.  After that, the 

gamma source rate at the surface of the pebble and the discrete source lines were written into 

files as output from SERPENT.  The second step of modeling and simulation was to convert 

these files to a GADRAS readable file format (.GAM files) (Rawool-Sullivan, et al. 2012) and 

feed them into GADRAS to produce the gamma-ray spectra in N42 or .PCF formats. To expedite 

the overall process, the burnup and photon transport simulation were combined into a single 

process that could execute on a cluster machine with 16 nodes.  Batch processing of the gamma 

spectra in GADRAS was done on a Windows 10 desktop computer. 

 

 



Proceedings of the INMM & ESARDA Joint Virtual Annual Meeting  
August 23-26 & August 30-September 1, 2021  

BNL-221947-2021-INRE 

Models of PBR Reactors and Fuel Pebbles 

Because this research was not on designing or optimization of the PBR core, modeling focused 

on single pebble instead of a full PBR core. To simplify and streamline the modelling process, a 

lattice model approach was adopted. First, the TRISO particles were modeled to establish a 

baseline for the requirements for a working SERPENT input file that produced reasonable 

output. The TRISO model was then updated to a pebble model to perform the preliminary 

burnup simulations and obtain the gamma source rate at the surface of the pebble. The final 

model was a lattice of 27 pebbles in a 3x3x3 configuration from which the centered pebble was 

used as the reference pebble. This lattice model was used to reduce the effect of the reflected 

boundary condition that was directly on the surface of the pebble, which could impact the 

accuracy of the calculated flux and hence estimation of isotope concentrations. With the lattice 

configuration, this reflected boundary was moved to the surface binding the 3x3x3 lattice. Figure 

1 below shows the three different stages of the model that was used in this work. Table 1 

summarizes the main parameters used in modeling the fuel pebbles after consulting the PBR fuel 

and reactor designers. 

 

 

 

 

 

 

Figure 1. Model of a PBR fuel pebble from a TRISO (Left) to a pebble (Center) and a 

3x3x3 Lattice (Right) 

Table 1. Parameters used in modeling the fuel pebble 

Parameter Value 

Uranium Oxy-Carbide (UCO) Density (atoms/b-cm) 6.9924E-02 

Buffer (C) Density (atoms/b-cm) 5.2644E-02 

Polycarbonate (PyC)/ Silicon Carbide (SiC)  Density (atoms/b-cm) ~9.5262E-02 

Number of Pebble/TRISO 27/18857 

Pebble/TRISO radius (cm) 3.000/0.0455 

Lattice configuration 3 x 3 x 3 

Power (MWth) 280 

Boundary condition Reflected/Periodic 

Pebble/TRISO PF1 0.5200/0.1137 

Average residence time (days)/Cycles(passes) 522/8 

Cooling time before spectral measurement (days) 0, 0.5, 1, 2, 5, 10 

Data acquisition time (s) 20, 3600 

 
1 PF is the Parking Fraction. The TRISO(s) and Pebble(s) have different parking fractions. 
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Burnup and Photon Transfer Simulations 

As mentioned earlier, two SERPENT simulations were used sequentially to produce photon flux 

on the surface of ejected pebbles. The first simulation was the burnup of a fuel pebble over 

various duration per cycle. These durations per cycle were computed to span across the average 

residence time divided by the number of cycles listed in Table 1.  

Table 2. Duration per cycle and residence time of fuel pebbles 

in the simulated PBR core 

Duration per cycle (days) Residence time (days) 

60 480 

65 520 

70 560 

 

In this work, 15 durations per cycle were selected ranging from 30 to 100 days. Table 2 above 

shows an example of relationship between the duration per cycle and average residence times. 

Since each of the durations per cycle produces a unique data set, the intervals were chosen to be 

uniformly spaced at 5 days. The duration of a cycle was further divided into 10 sub-steps to 

allow proper computation of the isotope concentration over burnup and lower the uncertainty 

that may result from large time steps. To eliminate any correlation that could occur between any 

two burnup calculations over residence time, the sub-steps were randomized by 25% across the 

center value. At the end of each cycle a cooling time was applied to let short-lived isotopes 

decay. Although typically a pebble bed core would have roughly a cosine axial power shape, this 

work assumed an average constant power distribution over a cycle for simplicity. The burnup 

simulation was performed with a million particles, which reduced the statistical uncertainty in 

the fission reaction rates for neutrons to less than 5% and the uncertainty on the total flux to less 

than 0.1 %. Figure 2 shows the general structure of the burnup process. 

 

Figure 2. Illustration of the pebble lattice burnup process 

The second phase of the burnup simulation ran a transport simulation using the isotope 

composition and parameters of each of the cycles and sub step. An outwards current tally was 

imposed on the reference pebble to obtain an estimate of the gamma source rate at the surface of 

the pebble. The energy grid of the imposed tally ranges from 0 MeV to 3 MeV with 512 



Proceedings of the INMM & ESARDA Joint Virtual Annual Meeting  
August 23-26 & August 30-September 1, 2021  

BNL-221947-2021-INRE 

uniformly spaced bins. Ten million particles were simulated for each step in the transport 

simulation that resulted in an uncertainty of less than 15 % in each bin.  

Generation of Gamma Spectra 

GADRAS is a general-purpose application for the modelling and analysis of radiation detector 

response, primarily gamma spectrometric instruments and neutron detectors based on 

proportional counters. To simulate detector response, a HPGe detector with 95% detection 

efficiency was selected in GADRAS. The detector was calibrated with spectroscopic pairs made 

up of 60Co, 57Co, 241Am, 133Ba, 137Cs, 88Y and 228Th before spectra were generated. Also, no 

simulated background was injected into the spectra generated in all datasets. The default 

deadtime of 10 s was used for all spectra dataset generated. The deadtime was corrected before 

the spectra were fed into algorithms.  

Dataset for Development and Test of Machine Learning Method 

For ML algorithm development and test, multiple gamma spectra datasets were generated for 

cooling time ranging from 0.5 days to 10 days and data acquisition time of 20 seconds and 3600 

seconds. The longest cooling time of 10 days allows short-lived isotopes to decay to negligible 

level while the longest data acquisition time of 3600 s helps reduce the statistical errors, hence 

that dataset was used as baseline for this study.  On the other hand, short cooling time of 0.5-2 

days and data acquisition time of 20 s are assumed by designers in the current reactor designs.  

The 0.5-, 2- and 5-day cooling dataset contain 120 gamma spectra, the 1-day cooling dataset 

contains 104 gamma spectra and the 10-day cooling has 112 gamma spectra. The burnup level in 

each of these datasets ranges from about 2 MWD/kgU to 50 MWD/kgU. 

Figure 3 shows examples of simulated spectra. The figure on the left shows the differences 

between 10 days and 0.5 days cooling time.  The latter has significant photopeak’s from short-

lived fission products and a general higher pebble source activity. The figure on the right shows 

the spectra of 20-sec and 3600-sec acquisition time from a pebble after 0.5-day cooling time.  It 

is worth noting that short acquisition time (e.g., 20 secs) and cooling time (e.g., 0.5-2 days) are 

preferred settings from operational point of view but will create very noisy spectra with many 

photopeak’s from short-lived isotopes. 

 

 

 

 

 

 

 

 

 

Figure 3. Similar residence and acquisition times (LEFT), Similar residence and 

cooling times (RIGHT) 

3600 secs acquisition 

20 secs acquisition 

10 days cooling 

0.5 day cooling 
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ALGORITHMS FOR BURNUP PREDICTION 

Linear regression baselines 

This works was compared against a standard linear regression as a baseline method: a single-

peak regression with the 662 keV photopeak for 137Cs. The correlation between the height of this 

photopeak and the fuel burnup has been established, in particular for long cooling times. 

However, this work attempts to determine its effectiveness in predicting burnup values for 

shortened cooling times and measurement times – situations which introduce noise and quality 

issues to measured spectra. 

ML models 

The effectiveness of different machine learning (ML) techniques on improving the prediction 

accuracy and consistency of fuel burnup from measured spectra was explored. This work focused 

on three types of ML models at the beginning of this work, Multilayer Perceptron (MLPs), 

Convolutional Neural Networks (CNN) and Transformers.  

The three ML model types differ in how they extract features from input data. Multilayer 

perceptron (also called fully connected networks, or feedforward neural networks) consist of 

several linear transformations separated by fixed nonlinear activation functions to support 

capture of nonlinear relationships, encoded in the weights of multiple network layers. At each 

layer, all the elements of the intermediate feature representation (starting with the raw spectra 

values for the first layer) are considered together in a single linear mapping to the next layer’s 

feature representation (after a nonlinear activation), so the MLP model architecture extract global 

features (Ruck, Rogers and Kabrisky 1990). CNNs, on the other hand, use a number of 

convolutional kernels at each layer that scan over an entire input sequence, but share weights per 

layer, and so extract local features [e.g. (Kamuda, et al. 2020)]. In addition to nonlinear 

activation functions, CNNs employ pooling layers to iteratively increase the receptive field of the 

convolutional kernels, and so gather local features to build a global feature representation. The 

Transformer architecture (Vaswani 2017), on the other hand, uses a feature called multi-head 

attention to create multiple dynamic mappings between all elements of a feature vector, and also 

incorporates a positional encoding scheme to enable the network to build global feature vectors 

that simultaneously capture contextualized local information as well. This paper focuses on the 

performance of MLP models, as our work in evaluating CNN and Transformer architectures for 

this data is ongoing. All models were created using the PyTorch deep learning library, and 

hyperparameters were determined empirically on training data. 

TEST RESULTS 

The predictive accuracy of the baseline regression methods and the trained ML models across 

eight datasets, covering two measurement times (30 secs and 3600 secs), and four cooling times 

(0.5, 2, 5, and 10 days) were evaluated. Baseline and ML models were all trained on 80% of the 

data for each set, and evaluated on the remaining 20% of spectra, to properly measure 

regression/model generalization performance on unseen data. The full raw spectra were made 

available to the ML models (4096-dimensional), with differing binning rates allowed as a 

hyperparameter (along with standard model-specific hyperparameter choices). Data preparation 

consisted of extracting burnup levels from the SERPENT simulations and transforming the 
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GADRAS-produced N42 spectra files into single datasets suitable for ML model consumption 

(e.g. CSV files). Burnup levels are in units of MWD/kgU. 

Regression Performance over Reduced Cooling and Acquisition Times 

As anticipated, the performance of a standard linear regression over one or multiple photopeaks 

to predict fuel burnup is significantly affected by reduced cooling and detector acquisition time. 

Figure 4 shows this effect for linear regression on the 662-keV photopeak of 137Cs. The two-

performance metrics used mean average percentage error (MAPE) and coefficient of 

determination (R2, which is the square of the Pearson correlation coefficient). In predictive 

regression analysis, R2 is the most useful measure of predictive quality, and in particular 

measures the ability of a regression model to track or correlate well with true values, whereas 

MAPE measures the expected scale of prediction errors. Performance metrics are shown for an 

average of 10 randomly shuffled data samples for creating the 80:20 training-testing split. 

As shown in the data plots, for sufficiently long acquisition times (1 hour), a simple linear 

regression can indeed predict fuel burnup reasonably well, with correlation scores over 0.99 for 

very long cooling times (10 days) and prediction errors of 9%. At shorted cooling times (0.5 

days), correlation remains above 0.97 and the error scaling is approximately 17%. 

 

 

Figure 4. Predictive performance of standard linear regression and trained MLP 

model over different fuel cooling time and detector acquisition times. 
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MAPE (mean average precision error) is a measure of error scale 

(lower is better), while R2 is a measure of correlation (higher is better). 

 

However, as acquisition time is shorted (20 seconds), linear regression performance falls 

dramatically (note the difference in plot scales). Even at a long 10-day cooling time, correlation 

scores fall under 0.85, with errors around 25%, and at 0.5 days of cooling time, correlations fall 

further to 0.65 and errors climb over 55%. Figure 5 shows the degree to which predictions from 

this linear regression agree with the true burnup values. Although predictions roughly correlate 

with the ground truth burnups, the deviations and scale of prediction errors are very apparent. 

For even shorter cooling times (which may be desirable in PBR reactor designs), this 

performance can be expected to suffer further. 

 

Figure 5. Ground truth vs predicted burnup for linear regression and trained MLP 

model on 0.5-day cooling and 20-sec acquisition time (the most 

challenging dataset). A perfect burnup prediction would correspond to 

all points laying along the main diagonal. 

MLP burnup prediction 

In stark contrast to the prior linear regression results, the predictive performance of the MLP 

models that were trained were only minimally affected by changes to fuel cooling and detector 

acquisition time, over the ranges tested. Figure 4 shows predictive performance of one MLP 

model trained over the same datasets as the prior linear regression. The model architecture used 

for this analysis was a 3-layer MLP with hidden layers of size 256 and 32; the standard PyTorch 

SGD (stochastic gradient descent) algorithm was used for training (for 200 epochs), with initial 

learning rate of 1e-3 and a 10x reduction every 50th epoch; momentum was enabled and set to 

0.9; dropout was disabled. Input spectra were re-binned with a bin width of 32. 

Not only does this MLP model significantly outperform the linear regression in all conditions, 

but the model in fact appears to be performance-saturated for the datasets tested. R2 correlation 

between MLP model predictions and true burnup values are effectively level across different 

cooling times: ~0.99 for 1 hour acquisition times and ~0.95 for 20-seconds. Error rates remain 
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around 4% for l hour acquisitions and 10% for 20-seconds. In fact, performance in all metrics 

even appears to improve for shorter (i.e. more challenging) cooling times, particularly for the 

more challenging 20-second acquisition time datasets. However, this effect is likely an artifact of 

model parameters not yet being fully optimized; further ML model optimizations should effect 

additional improvements in all conditions, particularly the ‘easier’ datasets. 

It is noteworthy that even in the most challenging measurement conditions, a relatively simple 

ML model architecture achieves exceptional agreement in its predictions with the true burnup 

values, far beyond what is possible with traditional photopeak regression. Figure 5 demonstrates 

this prediction quality on the most challenging measurement condition, showing the much-

improved burnup prediction quality. 

 

CONCLUSIONS AND DISCUSSIONS 

Burnup measurement is a critical measure in MC&A.  ML-based spectral analysis methods were 

proposed for estimation of the burnup of a pebble.  The preliminary tests in this work showed 

that both ML-based methods and the photopeak-based linear regression method could achieve 

high accuracy when the gamma-ray spectra contained negligible background radiation caused by 

short-lived fission products and minimal statistical errors.  However, such ideal condition is not 

achievable in the actual reactor operation.  Under the conditions that the PBR designers are 

considering today, e.g., 2 days or less cooling time and 20-s acquisition time, the gamma spectra 

from burnup measurement became noisy.  In that case, the proposed ML methods outperformed 

the conventional linear regression method significantly. 

The ultimate goals of this work are to improve MC&A, reduce the operational burden and 

simplify PBR reactor designs by developing a high-performance ML algorithm and identify the 

optimal operational condition for deployment.  It will allow stakeholders, such as regulators, 

PBR designers, and operators, to reach an achievable point in MC&A regulation related to spent 

fuel coming out of the PBR reactors.  The preliminary results reported in this paper have 

demonstrated the promise.  The datasets from the modeling and simulation allow further 

investigation to optimize the ML algorithm and identify the optimal deployment condition.  

Further results will be reported in future publications. An area of particular focus in our future 

work will be using the ML models we develop and train to help identify novel spectra features 

and relationships to aid in the interpretation and uncertainty quantification of ML model results. 
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