Temperature Effects and Corrections in Volume Measurements Based on Liquid-Level Detection

Year
1993
Author(s)
Bernard Keisch - Brookhaven National Laboratory
Sylvester Suda - Brookhaven National Laboratory
Abstract
Temperature changes affect volume measurements in several ways. The dimensions of the tank, and the density and level of the liquid it contains vary with temperature. In addition, the response signal of the sensor and hence the response of the liquid-level detection device may change with temperature. Level measurement devices can be grouped according to four measurement points of reference: tip of probe, response proportional to the length of probe, top of tank, and liquid surface. This paper describes the physical principles of pressure, capacitance probe, sonic reflections, and visual scales. These are representative of the four types of liquid-level detection techniques. Development of the temperature correction algorithm requires that the measurement process be clearly defined, conditions or limitations specified, and that a temperature-effects test be run. Although not difficult or necessarily time-consuming to run, good practice requires a test plan following demonstrated guidelines. Measurement control procedures for remeasurement of the process solution in the tank during normal operation can provide data to validate temperature correction algorithms.