Quantitative Digital Autoradiography for Environmental Swipe Sample Prioritization: System Design, Characterization, and Initial Measurements

Year
2017
Author(s)
Khris B. Olsen - Pacific Northwest National Laboratory
M. Bliss - Pacific Northwest National Laboratory
Ben S. McDonald - Pacific Northwest National Laboratory
Brian W. Miller - Pacific Northwest National Laboratory
MA Zalavadia - Pacific Northwest National Laboratory
D. Kasparek - Pacific Northwest National Laboratory
Abstract
Environmental sampling and sample analyses by the International Atomic Energy Agency’s (IAEA) Network of Analytical Laboratories (NWAL) is a critical technical tool used to detect facility misuse under a Comprehensive Safeguards Agreement and to verify the absence of undeclared nuclear material activities under an Additional Protocol. Currently all environmental swipe samples (ESS) are screened using gamma spectrometry and x-ray fluorescence to estimate the amount of U and/or Pu in the ESS, to guide further analysis, and to assist in the shipment of ESS to the NWAL. Quantitative Digital Autoradiography for Environmental Samples (QDARES) is being developed to complement existing techniques through the use of a portable, real-time, high-spatial-resolution camera called the Ionizing-radiation Quantum Imaging Detector (iQID). The iQID constructs a spatial map of radionuclides within a sample or surface in real-time as charged particles (betas) and photons (gamma/x-rays) are detected and localized on an event-by-event basis. Knowledge of the location and nature of radioactive hot spots on the ESS could provide information for subsequent laboratory analysis. As a nondestructive technique, QDARES does not compromise the ESS chain of custody or subsequent laboratory analysis. In this paper we will present the system design and construction, characterization measurements with calibration sources, and initial measurements of ESS.