MONTE CARLO CHARACTERIZATION OF PRESSURIZED WATER REACTOR SPENT FUEL ASSEMBLY FOR THE DEVELOPMENT OF A NEW INSTRUMENT FOR PIN DIVERSION DETECTION

Year
2006
Author(s)
Young S. Ham - Lawrence Livermore National Laboratory
G. Ivan Maldonado - University of Cincinnati
Abstract
A novel concept to detect pin-diversion from spent fuel assembly is proposed and described. The instrument will use multiple tiny neutron and gamma detectors in a form of cluster (detector cluster) and high precision driving system to collect radiation signatures inside pressurized water reactor (PWR) assembly. In order to validate our concept, a Monte Carlo study was done using a Monte Carlo code MCNP5. MONTEBURNS, a computational tool that links MCNP and ORIGEN, was used to produce accurate PWR spent fuel isotopic compositions. Monte Carlo simulations, using realistic fuel geometry and actual fuel material information, were performed to study radiation field inside a PWR spent fuel assembly. The preliminary Monte Carlo simulation study shows that indeed 2 dimensional neutron data, when obtained in the presence of missing pins, have data profiles distinctly different from the profiles obtained without missing pins.