SYSTEMS ANALYSIS OF SAFEGUARDS EFFECTIVENESS IN A URANIUM CONVERSION FACILITY

Year
2004
Author(s)
H. Lambert - Lawrence Livermore National Laboratory
H. A. Elayat - Lawrence Livermore National Laboratory
William J. O’Connell - Lawrence Livermore National Laboratory
Abstract
The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems. For this goal several DOE National Laboratories are defining the characteristics of typical facilities of several size scales, and the safeguards measures and instrumentation that could be applied. Lawrence Livermore National Laboratory is providing systems modeling and analysis of facility and safeguards operations, diversion path generation, and safeguards system effectiveness. The constituent elements of diversion scenarios are structured using directed graphs (digraphs) and fault trees. Safeguards indicator probabilities are based on sampling statistics and/or measurement accuracies. Scenarios are ranked based on value and quantity of material removed and the estimated probability of non-detection. Significant scenarios, especially those involving timeliness or randomly varying order of events, are transferred to simulation analysis. Simulations show the range of conditions encountered by the safeguards measurements and inspections, e.g., the quantities of intermediate materials in temporary storage and the time sequencing of material flow. Given a diversion campaign, simulations show how much the range of the same parameters observed by the safeguards system can differ from the base-case range. The combination of digraphs, fault trees, statistics and simulation constitute a method for evaluation of the estimated benefit of alternate or additional safeguards equipment or features. A generic example illustrates the method.