MARKOV MODEL APPLICATION TO PROLIFERATION RISK REDUCTION OF AN ADVANCED NUCLEAR SYSTEM

Year
2008
Author(s)
Robert Bari - Brookhaven National Laboratory
Meng Yue - Brookhaven National Laboratory
Lap-Yan Cheng - Brookhaven National Laboratory
Abstract
The Generation IV International Forum (GIF) emphasizes proliferation resistance and physical protection (PR&PP) as a main goal for future nuclear energy systems. The GIF PR&PP Working Group has developed a methodology for the evaluation of these systems. As an application of the methodology, a Markov model has been developed for the evaluation of proliferation resistance and is demonstrated for a hypothetical Example Sodium Fast Reactor (ESFR) system. This paper presents the case of diversion by the facility owner/operator to obtain material that could be used in a nuclear weapon. The Markov model is applied to evaluate material diversion strategies. The following features of the Markov model are presented here: (1) An effective detection rate has been introduced to account for the implementation of multiple safeguards approaches at a given strategic point; (2) Technical failure to divert material is modeled as intrinsic barriers related to the design of the facility or the properties of the material in the facility; and (3) Concealment to defeat or degrade the performance of safeguards is recognized in the Markov model. Three proliferation risk measures are calculated directly by the Markov model: the detection probability, technical failure probability, and proliferation time. The material type is indicated by an index that is based on the quality of material diverted. Sensitivity cases have been done to demonstrate the effects of different modeling features on the measures of proliferation resistance.