IMPLEMENTING A TECHNIQUE TO IMPROVE THE ACCURACY OF SHUFFLER ASSAYS OF WASTE DRUMS*

Year
1996
Author(s)
P.M. Rinard - Los Alamos National Laboratory
Abstract
The accuracy of shuffler assays for fissile materials is generally limited by the accuracy of the calibration standards, but when the matrix in a large drum has a sufficiently high hydrogen density (as exists in paper, for example) the accuracy in the active mode can be adversely aifected by a nonuniform distribution of the fissile material within the matrix. This paper reports on a technique to determine the distribution nondestructively using delayed neutron signals generated by the shuffler itself. In assays employing this technique, correction factors are applied to the result of the conventional assay according to the distribution. Maximum inaccuracies in assays with a drum of paper, for example, are reduced by a factor of two or three.