Year
2011
Abstract
Collaboration between the Pacific Northwest National Laboratory (PNNL) and the Los Alamos National Laboratory (LANL) is underway to evaluate neutron detection technologies that might replace the high-pressure helium (3He) tubes currently used in neutron multiplicity counter for safeguards applications. The current stockpile of 3He is diminishing and alternatives are needed for a variety of neutron detection applications including multiplicity counters. The first phase of this investigation uses a series of Monte Carlo calculations to simulate the performance of an existing neutron multiplicity counter configuration by replacing the 3He tubes in a model for that counter with candidate alternative technologies. These alternative technologies are initially placed in approximately the same configuration as the 3He tubes to establish a reference level of performance against the 3He-based system. After these reference-level results are established, the configurations of the alternative models will be further modified for performance optimization. The 3He model for these simulations is the one used by LANL to develop and benchmark the Epithermal Neutron Multiplicity Counter (ENMC) detector, as documented by H.O. Menlove, et al. in the 2004 LANL report LA-14088. The alternative technologies being evaluated are the boron-tri-fluoride-filled proportional tubes, boron-lined tubes, and lithium coated materials previously tested as possible replacements in portal monitor screening applications, as documented by R.T. Kouzes, et al. in the 2010 PNNL report PNNL-72544 and NIM A 623 (2010) 1035–1045. The models and methods used for these comparative calculations will be described and preliminary results shown